

Accessories

Cables	C-284
Flexible Couplings	C-288
Clean Dampers	··C-293
Mounting Brackets for Stepping Motors	··C-295
DIN Rail Mounting Plate	C-298

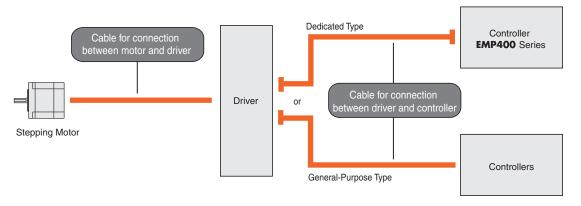
 Motor & Driver Packages
 2-Phase Stepping Motors
 Driver

 Closed Loop Qsree
 5-Phase Microstep
 5-Phase Full/Half
 2-Phase Full/Half
 without
 with Indexer

 AC Input
 DC Input

UMK CSK PK/PV PK UI2120G EMP401 SG8030J SMK

Controllers


Low-Speed Synchronous Motors

Accessories Motor

Cables

Extension cables provide convenient connection between a motor, driver and controller.

Type of Cables

For Connection between a Motor and Driver

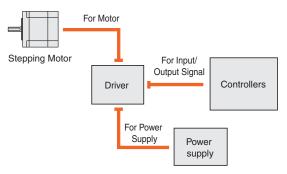
These cables are available to extend the distance between the motor and the driver for α_{step} and **RK** Series.

Cable Name	Page		Applicable Series
Extension Cable	C-286	3	RK Series
Extension Cable	C-286	4	Østep
Flexible Cable	C-286	5	α_{step}
Motor Cable	C-287	6	PK Series Standard P Type

For Connection between a Driver and Controller

These cables are available to extend the connection between the driver and controller. There are both dedicated cables for connection between the **EMP400** and the \mathcal{A}_{STEP} or **RK** Series, as well as general purpose cables for the \mathcal{A}_{STEP} and **RK** Series.

Cable Name		Page		Applicable Series
	Dedicated Type	C-285	1 -	$lpha_{step}$
	Deuloaleu Type	0-200		RK Series
Driver Cable	General-Purpose Type		2	α_{step}
		C-285		RK Series
				UI2120G


Cable set for DC input stepping motor & driver package

As an option for DC input drivers, lead wires with connectors are available.

Crimping is not necessary, and the connection with the motor, power supply, input/output signal is also easy.

Cable Name	Page	Applicable Series	
Optional Cables	C-287	7	5-phase PMC Series

The optional cable includes three cables (for motor, power supply and input/output signal).

Driver Cables

These cables are convenient for connecting \mathcal{A}_{STEP} and **RK** series drivers to controllers. General-Purpose Type and Dedicated Type (equipped with the connector for the **EMP** series controller) are available.

1 Dedicated Type

One end of the cable is a half-pitch connector that snaps into the driver for α_{srep} and **RK** series. The other end of the cable is equipped with the connector for the **EMP400** series controller.

Note:

Note that as the length of the pulse signal line increases, the maximum transmission frequency decrease. (*→*Technical Reference Page F-36)

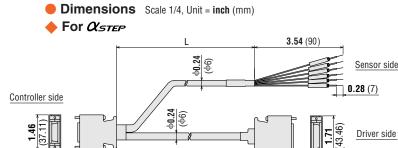
Product Line

♦ For *Aster*

Model	Applicable Series	Length L ft. (m)
CC01EMP4	— AS, ASC Series —	3.3 (1)
CC02EMP4	- AS, ASC Series -	6.6 (2)

Note:

0.5 (12.7)


 The alarm clear signal of the AS and ASC series cannot be used with the EMP400 series controller.

For RK Series

1.54

(39)

Model	Length L ft. (m)
CC01EMP5	3.3 (1)
CC02EMP5	6.6 (2)

2 General-Purpose Type

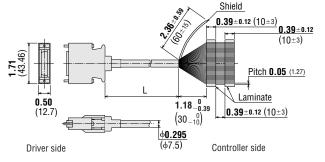
This is a ribbon cable equipped with, at one end of the cable, the half-pitch connector that snaps into the driver for α -rep, **RK** series and **UI2120G**.

Note:

Note that as the length of the pulse signal line increases, the maximum

transmission frequency decrease. (→Technical Reference Page F-36) • Install a connector that matches the controller you are using to the other end of

the cable.

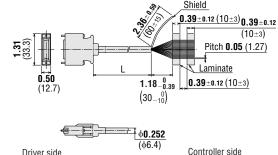

Product Line

Model	Applicable Series	Length L ft. (m)
CC36D1-1	— <i>α_{step} –</i>	3.3 (1)
CC36D2-1	- USTEP -	6.6 (2)
CC20D1-1	CASTEP AS PLUS	3.3 (1)
CC20D2-1	— RK Series — UI2120G	6.6 (2)

Dimensions Scale 1/4, Unit = inch (mm)

♦ For *Aster*

Conductor: AWG28


♦ For 𝔅₅теР (AS PLUS), RK Series and UI2120G Conductor: AWG28

For **RK** Series 3.54 (90) **0.24** <u>0.79</u> (9¢ Sensor side (20) 0.28 (7) **Φ0.22** (Φ5.7) 0.39 (10) 46 Controller side 1.31 Driver side 33. 0.39 (10) 낞 1.54 (39) 0.5 1.54 0.5 (12.7) <u>0.28 (</u>7) (12.7) (39)Control 0.24 (46) 0.79 for driver side 3.54 (90)

1.54

(39)

0.5 (12.7)

Introduction

AS

AS PLUS

ASC

R

CSK

PMC

UMK

SSK

PK/PV

PR

UI2120G

EMP401 EMP402

SG8030J

Motors

Closed Loop *Q*_{STEP} AC Input DC Input

AC Input

CFK II

DC Input

2-Phase Full/Half AC Input DC Input

Encoder

Encode

2-Phase Stepping Motors without with

Driver with Indexe

Controllers

Notor & Driver Packages

3 Extension Cable (For **RK** Series)

These extension cables are used between **RK** series motors and dedicated drivers. They come in three lengths: 16.4 feet (5 m), 32.8 feet (10 m), and 65.6 feet (20 m).

Model	Length L ft. (m)	Conductors
CC05PK5	16.4 (5)	
CC10PK5	32.8 (10)	5
СС20РК5	65.6 (20)	

• Conductor size: AWG22

• Finished outer diameter: ϕ 0.28 inch (ϕ 7.2mm)

• Cable rating: 221°F (105°C)

• Outer casing: oil-resistant, heat-resistant, non-migrating vinyl

Note:

These extension cables are only for the ${\rm RK}$ Series. Do not use them on other stepping motor & driver packages.

4 Extension Cable (For *Xstep*)

These extension cables are convenient when using the \mathcal{X}_{STEP} stepping motor and driver more than 1.31 feet (0.4 m) apart from each other. It's not necessary when the following products are used where the distance

between the driver and the motor is 1.31 ft. (0.4 m) or less.

AS, AS PLUS, ASC Series w/o electromagnetic brake

• AS, AS PLUS, ASC Series electromagnetic brake type [Motor Frame Size: 1.65 inch (42 mm)]

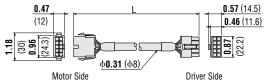
Product Line

For Standard

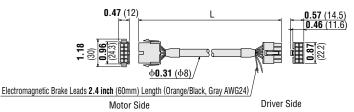
For with Electromagnetic Brake

				-
ĺ	Model	Length L feet (m)	Model	Length L feet (m)
	CC01AIP	3.3 (1)	CC01AIPM	3.3 (1)
	CC02AIP	6.6 (2)	CC02AIPM	6.6 (2)
	CC03AIP	9.8 (3)	CCO3AIPM	9.8 (3)
	CC05AIP	16.4 (5)	CC05AIPM	16.4 (5)
	CC07AIP	23 (7)	CC07AIPM	23 (7)
	CC10AIP	32.8 (10)	CC10AIPM	32.8 (10)
	CC15AIP	49.2 (15)*	CC15AIPM	49.2 (15)*
	CC20AIP	65.6 (20)*	CC20AIPM	65.6 (20)*

Note:


• Electromagnetic Brake models must use an extension cable for an

Electromagnetic Brake. But motor frame size \Box 1.65 in. (\Box 42 mm) model can use a standard extension cable for the Electromagnetic Brake.


* ASC Series can not use extension cable with 49.2 ft. (15 m), 65.6 ft. (20 m) length.

Dimensions Scale 1/4, Unit = inch (mm)

For Standard

For with Electromagnetic Brake

5 Flexible Cable (For *Aster*)

This flexible cable is used between $\mathcal{A}_{\text{STEP}}$ motors and dedicated drivers. We recommend this cable when the motor is installed on a moving section and the cable is repeatedly bent and extended.

For with Electromagnetic Brake

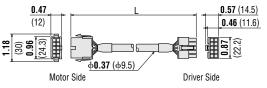
It is not necessary when the following products are used where the distance between the driver and the motor is 1.31 ft. (0.4 m) or less.

• AS Series, AS PLUS, ASC Series w/o electromagnetic brake

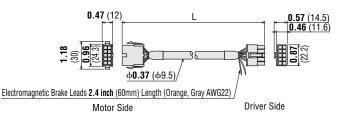
• AS Series, AS PLUS, ASC Series electromagnetic brake type [Motor Frame Size: 1.65 inch (42 mm)]

Product Line

For Standard


Model	Length L feet (m)		Model	Length L feet (m)
CC01SAR	3.3 (1)		CC01SARM2	3.3 (1)
CC02SAR	6.6 (2)		CC02SARM2	6.6 (2)
CC03SAR	9.8 (3)		CC03SARM2	9.8 (3)
CC05SAR	16.4 (5)	•	CC05SARM2	16.4 (5)
CC07SAR	23 (7)		CC07SARM2	23 (7)
CC10SAR	32.8 (10)		CC10SARM2	32.8 (10)

Note:


 Electromagnetic Brake models must use an extension cable for an Electromagnetic Brake. But motor frame size □1.65 in. (□42 mm) model can use a standard extension cable for the Electromagnetic Brake.

Dimensions Scale 1/4, Unit = inch (mm)

For Standard

For with Electromagnetic Brake

 When only the extension between motor and driver is needed, use an extension cable.

6 Motor Cables

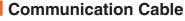
As an option, lead wires with connectors are available. A 2 ft. (0.6 m) lead wire connector is included with the motor and driver packages.

Product Line

Model	Package	Motor only	Length ft. (m)
LC5N06A	- CFK513P□	PK513P	2 (0.6)
LC5N10A		FKJIJF	3.3 (1)
LC2U06A		PK22_P	2 (0.6)
LC2U10A	_	PK223-SG	3.3 (1)
LC2U06B	_	PK23□P	2 (0.6)
LC2U10B		PK24□P	3.3 (1)

7 Optional Cables

As an option for DC input drivers, lead wires with a connector are available.


Crimping is not necessary, and the connection with the motor, power supply, input/output signal is also easy. The optional cable includes

three cables (for motor, power supply and input/output signal).

Product Line

Model	Applicable Series	Applicable Driver	Length ft. (m)
LCS01PMC	PMC Series	PMD03CA	2 (0.6)

Stepping Motors

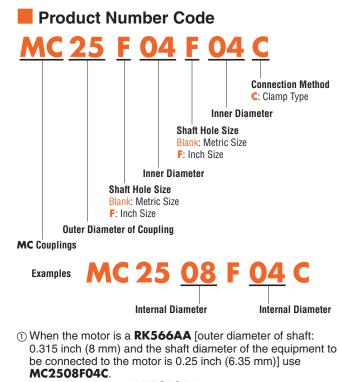
Use this 16.4 ft. (5 m) communication cable to connect the *Qstep* **AS PLUS** driver to a PC. (DSUB9F to RJ 11

: FC04W5 cable)

Flexible Couplings

MC Motor Couplings

Selecting an MC Coupling


Once you have decided on a motor and the shaft diameter of the equipment to be connected, determine the proper flexible coupling to use. Oriental Motor flexible couplings are available in external diameter sizes that provide the strength required for the motor torque.

All motor shaft diameters of stepping motor units are available with the exception of geared models.

There are three broad categories for the shaft diameter on the equipment to be connected based on the motor shaft diameter (except for some clamp types).

Features

- No backlash.
- Plate springs formed of slits reliably absorb eccentricity, declination and end play.
- Torsional rigidity is high, responsiveness excellent.
- Characteristics are the same in forward and reverse.
- Maintenance free (excellent resistance to oil and chemicals).
- Aluminum alloy construction.
- Standardized shaft hole sizes for motor shafts and driven shafts of different diameters.

② When the motor is a **RK5913AA** [outer diameter of shaft: 0.5512 inch (14 mm)] and the shaft diameter of the equipment to be connected to the motor is 0.5 inch (12.7 mm)] use **MC5014F08C**.

MC coupling can be selected using with motor sizing calculation result (\rightarrow Page F-2). Select a coupling which has rated torque bigger than motor required torque. In this way, smaller coupling may be able to use.

	Shaft Diameter			2-Phase Stepping 2	2-Phase Stepping	Low-Speed			haft Dia	meter	in. (mm)
Туре	in. (mm)	U STEP	5-Phase Stepping Motors	Motor Package	Motors	Synchronous			0.3125		0.5	0.625
	. ,					Motors	(4.763)	(6.35)	(7.938)	(9.525)	(12.7)	(15.875)
MC12	φ0.1969 (φ5)	_	RK543, CFK53□, CFK543, CSK543, PMC3□	UMK243, CSK243	PK22□P	SMK014	0					
	φ0.1969	ACA4 A/AA) ACCO4 AV	RK544, RK545, CFK544,									<u> </u>
MC16		AS46A(M), ASC34AK,	CFK545, CSK544, CSK545	UMK244, CSK244	PK233P, PK243		0	0				
	A0 1969	AJCJOAR, AJCHOA(M)R	CFRJ4J, CJRJ44, CJRJ4J		PK235P, PK244,							
MC20	(6 5)	_	—	UMK245, CSK245	PK245	_	0	0	0			
	φ0.25			UMK264, CSK264	PK264	SMK237		0	0	0		
	(ф6.35)	_	—	UMK266, CSK266	PK204	5MK237		0		0		
MC25	ф0.312	_	CFK564, CFK566	_				0				
MC25	(\$\$.937)		CSK564, CSK566					0				ļ
	φ0.315	_	RK564, RK566	_	_	_		0	0	0		
	(\$8)											ļ
	φ0.25	_	—	UMK268, CSK268	PK266, PK268	_		0	0	0		
	(\$\$6.35)				PV264, PV266							ļ
MC32	φ0.312 (φ7.937)	_	CFK569,CSK569	_	_	_		0				
	φ0.315	AS66A(M), AS69A(M)										
	(\$\$)	ASC66A(M)K	RK569	_		-		0	0	0		
	ф0.5		CFK596, CFK599,	UMK296, UMK299,	PK296	SMK5100				0	0	0
MC40	(φ12.7)	_	CSK596, CSK599	CSK296, CSK299	PK290	SMK5160				0	0	
MC40	ф0.5512	AS98A(M), AS911A	RK596, RK599							0	0	0
	(\$14)		, - '									ļ
	φ0.5 (φ12.7)	_	CFK5913, CSK5913	UMK2913, CSK2913	PK299, PK2913	-					0	0
MC50	φ0.5512										_	
	(¢14)		RK5913		_						0	0

Introduction

Closed Loop *Q*_{STEP} AC Input DC Input AS AS PLUS ASC

RK

CFKI

CSK

PMC

UMK

CSK

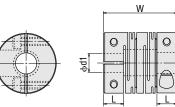
PK/PV

PK

UI2120G EMP401 SG8030J SMK

Controllers

Low-Speed Synchronous Motors


Motor & Driver Packages 5-Phase Microstep 5-Phase Full/Half AC Input DC Input DC Input

2-Phase Stepping Motors Driver 2-Phase Full/Half without with Indexer AC Input DC Input Encoder Encoder

Dimensions Unit = inch (mm)
 MC12-C, MC16-C, MC20-C, MC25-C, MC32-C

• MC40-C, MC50-C

φd2

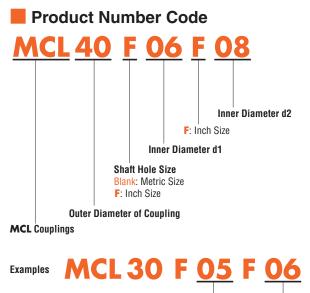
Specifications

			Dime	nsions			Rated	Weight	Inertia	Static Torsion	Permissible	Permissible	Permissible
Model	Outer Diameter ¢A in.(mm)	Length W in.(mm)	Shaft Hole Diameter d1 in. (mm)	Shaft Hole Diameter d2 in. (mm)	L in.(mm)	Screw Used M	Torque oz-in (N∙m)	OZ. (g)	oz-in² (kg⋅m²)	Spring Constant Ib-in/rad (N·m/rad)	Eccentricity in. (mm)	Declination	End Play in. (mm)
MC1205F03C	0.472 (12)	0.73 (18.5)	$\phi 0.1969 {}^{+ 0.0007}_{- 0} \ (\phi 5 {}^{+ 0.018}_{- 0})$	$\phi 0.1875 {}^{+ 0.0007}_{0} \ (\phi 4.763 {}^{+ 0.018}_{0})$	0.2 (5)	M2	28 (0.2)	0.14 (4)	0.0055 (1×10 ⁻⁷)	280 (32)	0.0039 (0.1)	2	±0.011 (±0.3)
MC1605F03C	0.63	0.91	ф0.1969 ^{+ 0.0007}	$\substack{ \varphi 0.1875 \ ^+ 0.0007 \\ (\varphi 4.763 \ ^+ 0.018 \\ 0 \) }$	0.26	M2.5	42	0.32	0.022	390	0.0039	2	±0.015
MC1605F04C	(16)	(23)	$(\phi 5 {}^{+} {}^{0.018}_{0})$	$\begin{array}{c} \varphi 0.2500 \stackrel{+ 0.0009}{- 0} \\ (\varphi 6.35 \stackrel{+ 0.022}{- 0}) \end{array}$	(6.5)	1012.0	(0.3)	(9)	(4×10 ⁻⁷)	(45)	(0.1)		(±0.4)
MC2005F03C				$\phi 0.1875 \stackrel{+ 0.0007}{}_{0}$ $(\phi 4.763 \stackrel{- 0.018}{}_{0})$									
MC2005F04C	0.79	1.02	$\substack{ \varphi 0.1969 {}^{+} {}^{0.0007}_{0} \\ \left(\varphi 5 {}^{+} {}^{0.018}_{0} \right) }$	$\begin{array}{c} \phi 0.2500 \stackrel{+ 0.0009}{_{0}} \\ (\phi 6.35 \stackrel{+ 0.022}{_{0}}) \end{array}$	0.3	M2.5	71	0.67	0.06	750	0.0039	2	±0.015
MC2005F05C	(20)	(26)		$\phi 0.3125 \stackrel{+ 0.0009}{_{0}}$ $(\phi 7.938 \stackrel{+ 0.022}{_{0}})$	(7.5)	1012.0	(0.5)	(19)	(11×10 ⁻⁷)	(85)	(0.1)	2	(±0.4)
MC2008F04C			$\phi 0.3150^{+0.0009}_{0}$	$\phi 0.2500 + 0.0009 \\ (\phi 6.35 + 0.022 \\ 0 \\ \phi 0.009 \\ \phi $									
MC2008F05C			$(\phi 8 {}^{+ 0.022}_{- 0})$	$\phi 0.3125^{+0.0009}_{0}$ $(\phi 7.938^{+0.022}_{0})$									
MC25F04F04C				$\phi 0.2500 + 0.0009 \\ (\phi 6.35 + 0.022) \\ \phi 0.009 \\ \phi 0.009 \\ \phi 0.009 \\ \phi 0.009 \\ \phi 0.0009 \\ \phi 0.00$									
MC25F04F05C			$\substack{\varphi 0.2500 \ ^+ \ ^0.0009 \\ (\varphi 6.35 \ ^+ \ ^0.022 \)}$	$\begin{array}{c} \varphi 0.3125 \stackrel{+\ 0.0009}{_{0}} \\ (\varphi 7.938 \stackrel{+\ 0.022}{_{0}}) \\ \varphi 0.3750 \stackrel{+\ 0.0009}{_{0}} \end{array}$	_								
MC25F04F06C	0.98	1.22		$(\phi 9.525 \stackrel{+ 0.022}{_{0}})$ $\phi 0.2500 \stackrel{+ 0.009}{_{0}}$	0.33	М3	142	1.2	0.175	2000	0.0059	2	±0.019
MC2508F04C	(25)	(31)	+0.0150 + 0.0009	$\begin{array}{c} \phi 0.2300 & _{0} \\ (\phi 6.35 & _{0}^{+ 0.022} \\ \phi 0.3125 & _{0}^{+ 0.0009} \end{array}$	(8.5)		(1)	(34)	(32×10 ⁻⁷)	(230)	(0.15)	-	(±0.5)
MC2508F05C			$\substack{\varphi 0.3150 {}^{+} {}^{0.0009}_{0} \\ \left(\varphi 8 {}^{+} {}^{0.022}_{0} \right)}$	$(\phi 7.938 \stackrel{+ 0.022}{_{0}})$ $\phi 0.3750 \stackrel{+ 0.009}{_{0}}$	_								
MC2508F06C				$(\phi 9.525 \stackrel{+ 0.022}{- 0})$ $\phi 0.2500 \stackrel{+ 0.009}{- 0}$									
MC32F04F04C			ф0.2500 ^{+ 0.0009}	$(\phi 6.35 \stackrel{+ 0.022}{_{0}})$ $\phi 0.3125 \stackrel{+ 0.009}{_{0}}$	_								
MC32F04F05C			$(\phi 6.35 {}^{+0.022}_{-0})$	$(\phi7.938 \stackrel{+ 0.022}{_{-}0})$ $\phi0.3750 \stackrel{+ 0.0009}{_{-}0}$	_								
MC32F04F06C	1.26	1.61		$(\phi 9.525 \stackrel{+ 0.022}{_{-}0.009})$ $\phi 0.2500 \stackrel{+ 0.009}{_{-}0.0009}$	0.47	M4	280	2.6	0.66	3100	0.0059	2	±0.019
MC3208F04C	(32)	(41)	ф0.3150 ^{+ 0.0009}	$(\phi 6.35 \stackrel{+ 0.022}{- 0})$ $\phi 0.3125 \stackrel{+ 0.009}{- 0}$	(12)		(2)	(75)	(120×10 ⁻⁷)	(360)	(0.15)		(±0.5)
MC3208F05C			$(\phi 8^{+0.022}_{-0})$	$\begin{array}{c}(\varphi 7.938 {}^{+ 0.022}_{0})\\ \varphi 0.3750 {}^{+ 0.0009}_{0}\end{array}$	_								
MC3208F06C				$\begin{array}{c}(\varphi 9.525 \begin{array}{c} ^{+} \begin{array}{c} 0.022 \\ 0 \end{array})\\ \varphi 0.3750 \begin{array}{c} ^{+} \begin{array}{c} 0.0009 \\ 0 \end{array}\end{array}$									
MC40F08F06C			$\phi 0.5000 \stackrel{+ 0.0011}{_{0}}$	$(\phi 9.525 \stackrel{+ 0.022}{_{-}0})$ $\phi 0.5000 \stackrel{+ 0.0011}{_{-}0}$	-								
MC40F08F08C	1.57	2.2	$(\phi 12.7 {}^{+ 0.027}_{0})$	$(\phi 12.7 \stackrel{+ 0.027}{_{0}}) \\ \phi 0.6250 \stackrel{+ 0.0011}{_{0}} $	0.59		710	5.6	2.2	6700	0.0078		±0.019
MC4014F06C	(40)	(56)		$(\phi 15.875 \stackrel{+ 0.027}{_{0}})$ $\phi 0.3750 \stackrel{+ 0.0009}{_{0}}$	(15)	M5	(5)	(160)	(400×10 ⁻⁷)	(760)	(0.2)	2	(±0.5)
MC4014F08C	(40)	(50)	$\phi 0.5512^{+0.0011}_{-0}$	$(\phi 9.525 + 0.022 \ 0)$ $\phi 0.5000 + 0.0011 \ 0.0022$	- (13)		(3)		(*00×10*)	(100)	(0.2)		(=0.0)
MC4014F10C			$(\phi 14^{+0.027}_{0})$	$(\phi 12.7 \stackrel{+ 0.027}{_{0}})$ $\phi 0.6250 \stackrel{+ 0.0011}{_{0}}$	-								
MC50F08F08C				$(\phi 15.875 \stackrel{+ 0.027}{0})$ $\phi 0.5000 \stackrel{+ 0.0011}{0}$									
MC50F08F10C	1.97	2.8	$\substack{\varphi 0.5000 {}^{+} {}^{0.0011}_{0} \\ \left(\varphi 12.7 {}^{+} {}^{0.027}_{0} \right)}$	$(\phi 12.7 \stackrel{+ 0.027}{_{0}})$ $\phi 0.6250 \stackrel{+ 0.021}{_{0}}$	0.71		1420	12	6.6	26000	0.0078		±0.019
MC5014F08C	(50)	(71)		$(\phi 15.875 + 0.027)$ $\phi 0.5000 + 0.0011$ (110.7 + 0.027)	(18)	M6	(10)	(330)	(1200×10 ⁻⁷)		(0.2)	2	(±0.5)
MC5014F10C	(,	$\substack{\varphi 0.5512 \stackrel{+ 0.0011}{0}}{(\varphi 14 \stackrel{+ 0.027}{0})}$	$(\phi 12.7 + 0.027)$ $\phi 0.6250 + 0.0011$ (115.075 + 0.027)	-		()	((1900)	()		(_0.0)
				(\$\$\phi15.875^+ 0.027_0\$)									

Before Using a Stepping Motor

Accessories

MCL Geared Motor Couplings


Selecting an MCL Coupling

Once you have decided on a motor and the shaft diameter of the equipment to be connected to it, determine the proper flexible coupling to use. Oriental Motor flexible coupling are available external diameter in sizes that provide the strength required for the motor torque.

These flexible couplings are clamp types and connect geared stepping motors to other shafts. Select the coupling to match the motor.

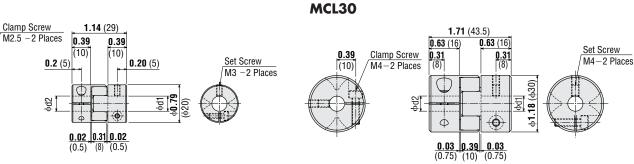
Features

- Couplings come with shaft holes and have standardized combinations of different diameter shaft holes.
- Characteristics are the same for clockwise and counterclockwise rotation.
- Oil-resistant and electrically insulated couplings are available.
- Aluminum alloy construction.
- The shaft being driven is not damaged, since shafts are joined by clamping.
- Easy installation due to separating hub and sleeve design.

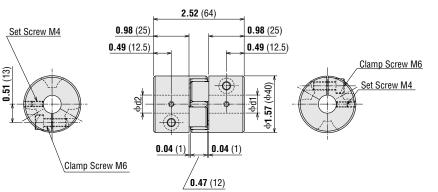
Internal Diameter d1

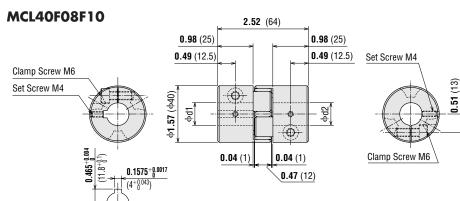
Internal Diameter d2

When the motor is **CSK264ATA-SG3.6** [outer diameter of shaft: 0.3125 inch (7.938 mm)] and the axis diameter of the equipment to be connected to the motor is 0.375 inch (9.525 mm), use **MCL30F05F06**.


	Shaft Diameter			Low-Speed	Driven Shaft Diameter in. (mm)					
Туре	in. (mm)	5-Phase Stepping Motors	2-Phase Stepping Motors	Synchronous Motor	0.1875 (4.763)	0.25 (6.35)	0.3125 (7.938)	0.375 (9.525)	0.5 (12.7)	0.625 (15.875)
MCL20	φ0.1968 (φ5)	РМСЗЗ-МС	CSK243-SG_, PK223-SG_ PK243-SG_	SMKOAA	0	0	0			
MCL30	ф0.25 (ф6.35)	_	_	SMK216-GN / 2GN⊒KA			0			
MCLOU	φ0.3125 (φ7.938)	—	CSK264-SG PK264-SG	_				0	0	
MCL40	φ0.5 (φ12.7)	_	PK296-SG	SMK550-GN / 5GN⊒KA				0	0	0

Specifications


	Dimensions				Normal Torque	Weight	Inertia	Permissible	Permissible	Permissible
Model	Outer	Length		Axis Hole		-		Eccentricity	Declination	End Play
Wodel	Diameter in. (mm)	in. (mm)	Diameter d1 in. (mm)	Diameter d2 in. (mm)	lb-in (N⋅m)	oz. (g)	oz-in² (kg·m²)	in. (mm)	degrees	in. (mm)
MCL2005F03				ф0.1875 ^{+ 0.0007}						
MCL2005105				(\$4.763 ^{+ 0.018})						+0.0315
MCL2005F04	0.79	1.14	ф0.1969 ^{+ 0.0007}	$\phi 0.2500 \stackrel{+ 0.0009}{_{0}}$	44	0.67	0.055	0.0059	1°	0
MCL2005104	(20)	(29)	$(\phi 5 {}^{+ 0.018}_{0})$	$(\phi 6.35 \ {}^{+ 0.022}_{0})$	(5.0)	(19)	(1.0×10 ⁻⁶)	(0.15)		(+0.8)
MCL2005F05				$\phi 0.3125 {}^{+ 0.0009}_{0}$						
				$(\phi 7.938 \stackrel{+ 0.022}{0})$						
MCL30F04F05			$\phi 0.2500 \stackrel{+\ 0.0009}{0}$	$\phi 0.3125 \stackrel{+ 0.0009}{_{0}}$						
			$(\phi 6.35 \stackrel{+ 0.022}{_{0}})$	$(\phi 7.938 + 0.022)$						+0.0394
MCL30F05F05	1.18	1.71		$\phi 0.3125 + 0.0009_{0}$	110	2.3	0.45	0.0079	1°	0
	(30)	(43.5)	φ0.3125 ^{+ 0.0009}	$(\phi7.938 \stackrel{+ 0.022}{_{0}})$	(12.5)	(66)	(8.3×10 ⁻⁶)	(0.2)		(+1.0)
MCL30F05F06			$(\phi 7.938 {}^{+ 0.022}_{0})$	$\phi 0.3750 + 0.0009$						
				$(\phi 9.525 + 0.022)$						
MCL40F06F08			$\phi 0.3750 \stackrel{+ 0.0009}{_{0}}$	$\phi 0.5000 \stackrel{+ 0.0011}{_{0}}$						
	4 5 7	0.50	$(\phi 9.525 \stackrel{+ 0.022}{_{0}})$	$(\phi 12.7 + 0.027)$	000		1.07	0.0070		+0.0472
MCL40F08F08	1.57	2.52	10 5000 + 0.0011	$\phi 0.5000 + 0.0011 \\ 0 \\ (+10.7 + 0.027)$	220	5.3	1.97	0.0079	1°	0
	(40)	(64)	$\phi 0.5000 + 0.0011 \\ 0 \\ (140.7 + 0.027)$	$(\phi 12.7 + 0.027)$	(25.0)	(150)	(3.6×10 ⁻⁵)	(0.2)		$\binom{+1.2}{2}$
MCL40F08F10			(\$12.7 + 0.027)	$\phi 0.6250 + 0.0011 \\ 0 \\ (+15.875 + 0.027)$						
				$(\phi 15.875 {}^{+ 0.027}_{0})$						



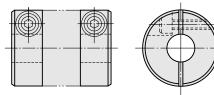
MCL40F06F08 MCL40F08F08

Stepping Motors

Introduction

Before Using a Stepping Motor

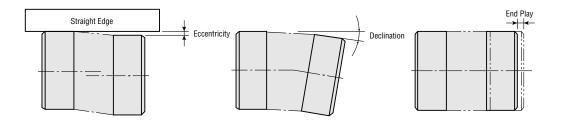
UI2120G EMP402 SG8030J


Low-Speed Synchronous Motors

Driver with Indexer

Controllers

Mounting to a Shaft

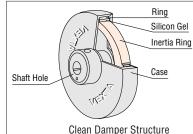

Clamp couplings use the binding force of the screw to compress the shaft hole diameter and thereby fasten the coupling to the shaft. This does not damage the shaft and is easy to mount and remove. The following table shows the screw binding torque. We recommend use of a torque wrench to fasten the coupling.

		MC12-C	MC16-C MC20-C MCL20	MC25-C	MC32-C MCL30	MC40-C	МС50-С	MCL40
Tightening Torque	oz-in	71	142	210	350	560	1130	1700
rightening forque	(N·m)	(0.5)	(1)	(1.5)	(2.5)	(4)	(8)	(12)
Tightening Torque of	oz-in		99		280			2400
key press screw for MCL coupling	(N·m)		(0.7)		(1.7)			(17)

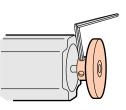
Alignment Adjustment

Flexible couplings tolerate misalignment of the axis center and transfer rotational angle and torque, but produce vibration when the permissible value for misalignment is exceeded. This can dramatically shorten the coupling's service life. This requires alignment adjustment. Misalignment of the axis center includes eccentricity (parallel error of both centers), declination (angular error of both centers) and end play (shaft movement in the axial direction). To keep misalignment within the permissible value, always check and adjust the alignment. To increase the service life of the coupling, we recommend keeping misalignment to below 1/3 of the permissible value.

Notes:


- When misalignment exceeds the permissible value or excessive torque is applied, the coupling's shape will deform, and service life is shortened.
- When the coupling emits a metallic sound during operation, stop operation immediately and ensure there is no misalignment, axis interference or loose screws.
- When load changes are large, paint the coupling set screw with an adhesive to prevent the coupling screw from loosening or substitute a coupling one size larger.

Mechanical dampers suppress stepping motor vibration and improve high-speed performance. An inertial body and silicon gel are hermetically sealed in a plastic case. This offers the following advantages over conventional magnetic dampers.


Features

- Since there is no frictional dust as in conventional magnetic dampers, it can be used in environments where higher degrees of cleanness is needed.
- Excellent vibration absorption
- The doughnut-shaped internal inertia body and silicon gel absorb vibration. This feature enables a stable damping effect.
- High reliability
- It holds up well in harsh environments and changes little with age because the silicon gel and plastic case used are heat resistant.

Installation of the Clean Damper

Point the mounting screws of the clean damper toward the motor case, fasten to the shaft and tighten the damper's mounting screws (2 places) with a hexagonal wrench to secure it to the shaft.

Notes:

- There are mounting screws with hexagonal holes in two damper locations, so tighten them both before running the motor.
- The damper rotates at the same speed as the motor shaft, so do not touch it while the motor is running.

Model	Inertia	Weight	Co	ompatible Motors
MOUEI	oz-in² (kg · m²)	lb. (g)	5-Phase	2-Phase
D4CL-5.0F	0.186 (34×10 ⁻⁷)	0.053 (24)	RK54_, RK54T, RK54N, RK54H CFK53_, CFK54_ CSK54_, CSK543-TG_ PMC33_, PMC33-MG_, PMC33-HG_	UMK24, UMK24 CSK24, CSK24, M, CSK243-SG PK22 P PK23 P PK24 P PK24, PK24 M PK223-SG, PK243-SG UMK26
D6CL-6.3F	0.77 (140×10 ⁻⁷)	0.14 (62)		UMK26 CSK26 CSK26 M CSK264-SG PK26 PK26 M PK264-SG PV264, 266, 267
D6CL-8.0F	0.77 (140×10 ⁻⁷)	0.13 (61)	RK56_, RK56T, RK56N, RK56H CFK56_, CFK56_H	
D9CL-12.7F	4.8 (870×10 ⁻⁷)	0.23 (105)	CFK59□, CFK59□H CSK59□	CSK29□ PK29□, PK296-SG
D9CL-14F	4.8 (870×10 ⁻⁷)	0.23 (105)	RK59□ RK59□-T RK59□-N RK59□-H	

Ambient Temperature: $-4^{\circ}F \sim +176^{\circ}F (-20^{\circ}C \sim +80^{\circ}C)$

* Insert the motor case length into the 🗌 of the model name. The character of A, B and M which show the shaft type and electromagnetic brake type are omitted.

Product Line

Introduction

AS

AS PLUS

ASC

RR

CFKI

CSK

PMC

UMK

SSK

UI2120G

EMP401 EMP402

SG8030J

SMK

AC Input DC Input

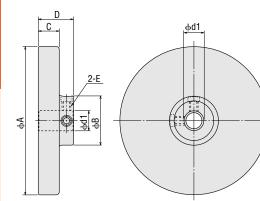
AC Input 5-Phase Microstep

DC Input

DC Input

2-Phase Full/Half AC Input DC Input

Encoder without PK/PV


Phase Stepping Motors Encode with PR

Driver with Indexe

Controllers

Motor & Driver Packages

Dimensions Unit = inch (mm)

Model	d1	А	В	С	D	E
D4CL-5.0F	$\begin{array}{c} 0.1969 & {}^{+0.0007}_{0} \\ (5 {}^{+0.018}_{0}) \end{array}$	$\begin{array}{l} \varphi 1.42 \pm 0.02 \\ (\varphi 36 \pm 0.5) \end{array}$	$\begin{array}{l} \varphi 0.51 \pm 0.02 \\ (\varphi 13 \pm 0.5) \end{array}$	$\begin{array}{l} 0.354 \pm 0.012 \\ (9 \ \pm 0.3) \end{array}$	$\begin{array}{l} \textbf{0.591} \ \pm 0.012 \\ \textbf{(15} \ \pm 0.5) \end{array}$	M3 2 Places
D6CL-6.3F	$\begin{array}{c} 0.2500 & {}^{+0.0009}_{0} \\ (6.35 {}^{+0.022}_{0}) \end{array}$	_ф1.75 ±0.02	φ 0.79 ±0.02	0.591 ±0.012	0.87 ±0.02	M4
D6CL-8.0F	$\begin{array}{c} 0.3150 & {}^{+0.0009}_{0} \\ (8 {}^{+0.022}_{0}) \end{array}$	$(\phi 44.5 \pm 0.5)$	$\left(\varphi 20 \pm 0.5\right)$	(15 ±0.3)	(22 ±0.5)	2 Places
D9CL-12.7F	$\begin{array}{c} 0.500 & {}^{+0.0011}_{0} \\ (12.7 & {}^{+0.027}_{0}) \end{array}$	∲3.13 ±0.02	\$\$1.02 ±0.02	0.433 ±0.012	0.75 ±0.02	M4
D9CL-14F	$\begin{array}{c} 0.5512 & {}^{+0.0011}_{0} \\ (14 {}^{+0.027}_{0}) \end{array}$	(φ79.5 ±0.5)	$\left(\varphi 26 \pm 0.5\right)$	(11 ±0.3)	(19 ±0.5)	2 Places

Mounting Brackets for Stepping Motors

Mounting brackets are convenient for installing maintaining proper alignment between the motor shaft and the load.

Product Line

There are 10 types of mounting brackets for stepping motors. Standard Type, Standard P Type, High-Speed Type, High-Resolution Type,

High Inertia Type (PV Series)

Material: Aluminum die cast

Mounting		Applicable	e Motor Type	
Bracket Models	U STEP	5-Phase Stepping Motors	2-Phase Stepping Motors	Low-Speed Synchronous Motors
PALOPA	-	CSK54 CFK54	UMK24□, UMK24□M CSK24□, CSK24□M PK24□, PK24□M	
PAFOP	AS46A, AS46M ASC46AK, ASC46MK	RK54	РК24□Р	SMK014A-A SMK014MA-A
PAL2P-5A	AS66A, AS69A AS66M, AS69M ASC66AK, ASC66MK	RK56□ CSK56□ CFK56□, CFK56□H	_	_
PAL2P-2	_	_	UMK26 , UMK26 M CSK26 , CSK26 M PK26 , PK26 M PV26	SMK237A-A
PAL4P-5A	AS98A, AS98M AS911A	RK59□ CSK59□, CFK59□H	_	_
PAL4P-2	_	_	CSK29□ PK29□	SMK5100A-AA SMK5160A-AA

• Insert the motor case length in the \square of the model name.

The character of **A** and **B** which show the shaft type are omitted (except for Low Speed Synchronous Motor).

• The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.

(Adjustable range: Approximately 0.24 inch [6 mm])

• These mounting brackets can be perfectly fitted to the pilot of the stepping motors. (except for PALOPA) Notes:

• These mounting brackets are for stepping motors only. They cannot be used with compact AC motors.

They cannot be used with geared stepping motors.

Geared Type

Material: Aluminum die cast

Mounting Bracket	Applicable Motor Type							
Models	Østep	5-Phase Stepping Motors	2-Phase Stepping Motors	SMK				
SOLOA-A	_	_	CSK243-SG PK243-SG	SMKOA-				
SOLOB-A	AS46-T□ ASC46-T□	RK543-T□ CSK543-T□	_					
SOL2A-A	AS66-T ASC66-T	RK564-T□ CSK564-T□	CSK264-SG PK264-SG					
SOL5B-A	AS98-T	RK596-T	PK296-SG	_				

• Insert the gear ratio in the \square of the model name.

The character of **A** and **B** which show the shaft type and the length of the motor case are partly omitted.

The mounting bracket base is built with holes large enough to allow for alignment adjustments in the horizontal direction.

• When mounting, use the screws included with the geared motor. (except for α_{step})

Note:

These mounting brackets are for geared stepping motors only. They cannot be used with compact AC motors or stepping motors with gearheads.

Introduction

AS

AS PLUS

ASC

RR

CSK

PMC

UMK AC Input 2-Phase Full/Half DC Input SSK

Closed Loop O(STEP DC Input

AC Input

DC Input СЕКП

5-Phase Full/Half

DC Input

Encoder without PK/PV

Encode

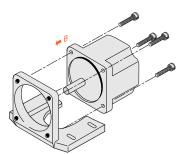
PR with

UI2120G

EMP401 EMP402

SG8030J

SMK

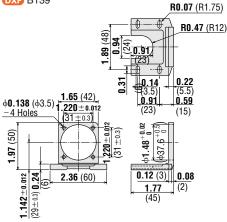

Phase Stepping Motors

Driver with Indexe

Controllers

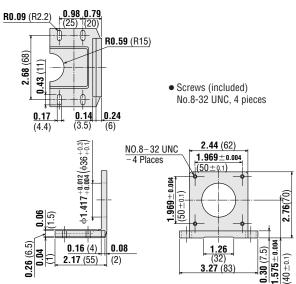
Motor & Driver Packages

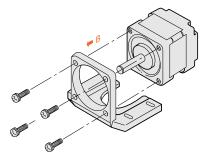
Mounting the Motor 1 PAL2P-__, PAL4P-__



1 Use the screws provided to secure the motor to the mounting bracket.

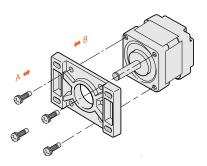
(2) Attach the motor from the direction shown by the arrow (B).


Weight: 1.24 oz. (35 g) DXF B139

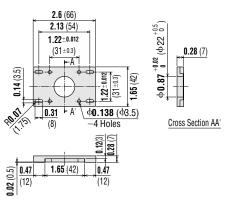

• Screws (included) No.4-40 UNC, 4 pieces

PAL2P-5A

Weight: 3.9 oz. (110 g) DXF B143

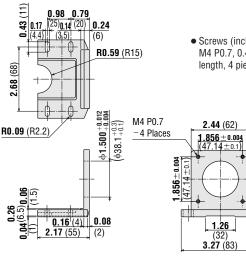


2 PALOPA SOLO, SOL2, SOL5


- ① Use the screws provided to secure the motor to PALOPA.
- (2) Attach the motor from the direction shown by the arrow (B).

3 PAFOP

- ① Use the screws provided to secure the motor to **PAFOP**.
- (2) Motor can be attached from either side (A, B).


PAFOP Weight: 1.06 oz. (30 g) DXF B140

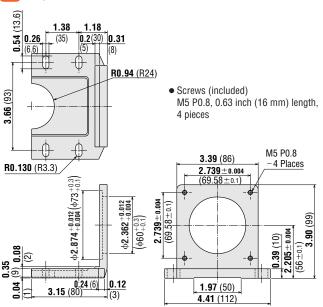
• Screws (included) M3 P0.5, 0.28 inch (7 mm) length, 4 pieces

PAL2P-2

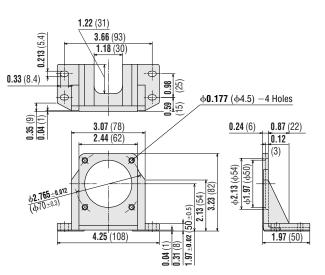
Weight: 3.9 oz. (110 g) DXF B144


 Screws (included) M4 P0.7, 0.47 inch (12 mm) length, 4 pieces

C-292


PAL4P-5A

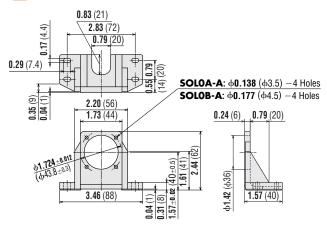
Weight: 8.8 oz. (250 g) DXF B145


PAL4P-2 Weight: 8.8 oz. (250 g)

DXF B146

SOL2A-A

Weight: 4.2 oz. (120 g) **DXF** B268



SOLOA-A

Weight: 2.8 oz. (80 g) **DXF** B266

SOLOB-A

Weight: 2.8 oz. (80 g) **DXF** B267

2-Phase Full/Half AC Input DC Input CSK 2-Phase Stepping Motors without with Encoder Encoder PK/PV PR Driver with Indexer **UI2120G** EMP401 EMP402 Controllers SG8030J Low-Speed Synchronous Motors SMK Before Using a Stepping Motor

Stepping Motors

Introduction

AS

AS PLUS

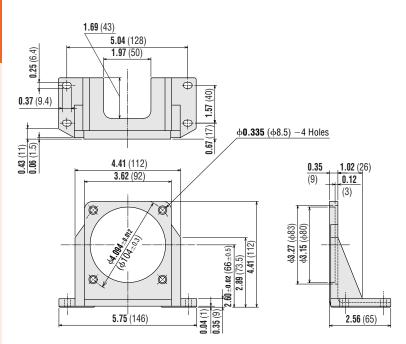
ASC

RR

CFKI

CSK

PMC


UMK

Closed Loop *Q*(STEP AC Input DC Input

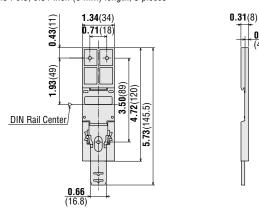
Motor & Driver Packages 5-Phase Microstep 5-Phase Full/Half AC Input DC Input DC Input

Stepping Motors

SOL5B-A Weight: 9.5 oz. (270 g)

DIN Rail Mounting Plate

This installation plate is convenient for installing the driver on DIN rails with ease. The required installation screws come with this installation plate.


Model: PADP01

Applicable Product: QSTEP AS Series driver

Dimensions Unit = inch (mm)

Weight: 0.71 oz. (20 g)

• Screws (included) M3 P0.5, 0.31 inch (8 mm) length, 3 pieces

0.18 (4.5)

