Panasonic

PROGRAMMABLE CONTROLLER FP2/FP2SH User's Manual

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents.
To ensure that you use this product correctly, read this User's Manual thoroughly before use. Make sure that you fully understand the product and information on safety.
This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.

-Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor.
-Do not use this product in areas with inflammable gas. It could lead to an explosion.
-Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.
-Battery may explode if mistreated. Do not recharge, disassemble or dispose of fire.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.

-To prevent excessive exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assured in these specifications.
-Do not dismantle or remodel the product. It could cause excessive exothermic heat or smoke generation.
-Do not touch the terminal while turning on electricity. It could lead to an electric shock.
-Use the external devices to function the emergency stop and interlock circuit.
-Connect the wires or connectors securely.
The loose connection could cause excessive exothermic heat or smoke generation.
-Ground the protective earth (PE) terminal (Class D grounding). Failure to do so could lead to an electric shock.
-Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It could cause excessive exothermic heat or smoke generation.
-Do not undertake construction (such as connection and disconnection) while the power supply is on. It could lead to an electric shock.

Copyright / Trademarks

-This manual and its contents are copyrighted.
-You may not copy this manual, in whole or part, without written consent of Panasonic Industrial Devices SUNX Co., Ltd.
-Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
-All other company names and product names are trademarks or registered trademarks of their respective owners.

PLC_BATPE

Table of Contents

Before You Start viii
Special Precautions X
Compatibility with CPU Unit, and Precautions xiii
Compatibility of FP2SH and FP2, and Precautions xiv
IC memory cards for the FP2SH xv
Compatibility of FP2/FP2SH and FP10SH, and Precautions xvi
Programming Tool Restrictions xvii
Chapter 1 Overview
1.1 System Configuration 1-3
1.1.1 Basic Configuration by Number of Slots 1-3
1.1.2 Expansion of Backplane 1-5
1.2 Unit Types and Combinations 1-8
1.2.1 Line-Up of Backplanes and Units 1-8
1.2.2 Combinations That Can be Used and Restrictions 1-10
1.2.2.1 Restrictions on Unit Types 1-10
1.2.2.2 Limitations on Current Consumption 1-12
1.3 Expansion Function 1-15
1.3.1 Computer Link 1-15
1.3.2 Connection of MODEM 1-17
1.4 Programming Tools 1-19
1.4.1 Tools Needed for Programming 1-19
1.4.2 Software Environment and Suitable Cable 1-20
1.4.3 Tools Needed for ROM Creating 1-21
Chapter 2 Parts and Functions
2.1 Backplane and Expansion Cable 2-3
2.1.1 Backplane 2-3
2.1.2 Basic Backplane H Type (FP2-BP**MH) 2-5
2.1.3 Expansion Backplane H Type (FP2-BP**EH) 2-6
2.1.4 Expansion Cable 2-7
2.2 FP2 CPU 2-8
2.2.1 Standard Type CPU (FP2-C1) 2-8
2.2.2 CPU with 64 Points Input (FP2-C1D) 2-12
2.3 Expansion Memory Unit and ROM (for FP2 CPU) 2-15
2.4 FP2SH CPU 2-18
2.4.1 32k/60k Step Standard Type CPU (FP2-C2L/FP2-C2) 2-19
2.4.2 CPU with IC Memory Card Interface (FP2-C2P/FP2-C3P) 2-20
2.5 Expansion Memory Unit and ROM (for FP2-C2L/FP2-C2) 2-22
2.6 IC Memory Card (for FP2-C2P/FP2-C3P) 2-23
2.7 Power Supply Units 2-28
2.7.1 Power Supply Specifications 2-28
2.8 Input and Output Units 2-30
2.8.1 Common Specifications of Input and Output Units 2-30
2.9 Input Units Specifications 2-33
2.9.1 16-point Type DC Input Unit 2-33
2.9.2 32-point Type DC Input Unit 2-35
2.9.3 64-point Type DC Input Unit 2-37
2.10 Output Units Specifications 2-39
2.10.1 16-point Type Relay Output Unit 2-39
2.10.2 6-point Type Relay Output Unit 2-41
2.10.3 16-point Type Transistor (NPN) Output Unit 2-43
2.10.4 16-point Type Transistor (PNP) Output Unit 2-45
2.10.5 \quad 32-point Type Transistor (NPN) Output Unit 2-47
2.10.6 32-point Type Transistor (PNP) Output Unit 2-49
2.10.7 64-point Type Transistor (NPN) Output Unit 2-51
2.10.8 64-point Type Transistor (PNP) Output Unit 2-53
2.11 I/O Mixed Units Specifications 2-55
2.11.1 32-point Type DC Input/32-point Type Transistor (NPN) Output Unit 2-55
2.11.2 32-point Type DC Input/32-point Type Transistor (PNP) Output Unit 2-58
2.11.3 32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (NPN) Unit 2-61
2.11.4 32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (PNP) Unit 2-64
2.11.5 On Pulse Catch Input Function 2-67
Chapter 3 I/O Allocation
3.1 Fundamentals of I/O Allocation 3-3
3.1.1 I/O Allocation and Registering 3-3
3.1.1.1 Types of I/O Allocation Methods 3-3
3.1.1.2 Precautions Regarding Registering of I/O Allocation 3-3
3.1.1.3 How to Count the I/O Numbers and Express the Occupied Points 3-4
3.1.2 Table of Occupied I/O Points by Unit 3-5
3.2 Arbitrary Allocation 3-7
3.2.1 Using Arbitrary Allocation 3-7
3.2.2 Allocation Example of CPU Backplane 3-7
3.2.3 Allocation Example of Expansion Backplane 3-10
3.2.3.1 When Using FP2 Backplane 3-10
3.2.3.2 When Using FP2 Backplane H Type 3-11
3.3 I/O Mount Allocation 3-13
3.3.1 Using I/O Mount Allocation 3-13
3.3.1.1 Example of I/O Mount Allocation 3-13
3.3.1.2 Procedure for I/O Mount Allocation 3-14
3.4 Automatic Allocation 3-15
3.4.1 Using Automatic Allocation 3-15
3.4.1.1 Example of Automatic Allocation 3-15
3.4.1.2 Procedure for Automatic Allocation 3-16
3.5 Procedure for Clearing Registered Content 3-17
3.5.1 Meaning of Clearing Registered Content 3-17
3.5.2 Clearing Content Using Programming Tool Software 3-17
3.6 I/O Numbers of Free Slots 3-18
3.6.1 I/O Numbers of Free Slots 3-18
3.6.2 Differences Due to Allocation Methods 3-18
3.6.2.1 When Arbitrary Allocation is Used 3-18
3.6.2.2 When I/O Mount Allocation is Used 3-20
3.6.2.3 When Automatic Allocation is Used 3-21
Chapter 4 Installation and Wiring
4.1 Installation 4-3
4.1.1 Installation Space and Environment 4-3
4.1.2 Mounting Method 4-6
4.1.2.1 Backplane 4-6
4.1.2.2 Units 4-8
4.1.3 Connecting Expansion Cable 4-11
4.1.4 Preparing the Backup Battery 4-13
4.2 Power Supply Wiring 4-15
4.2.1 Wiring of Power Supply 4-15
4.2.2 Grounding 4-17
4.3 Wiring Input and Output 4-18
4.3.1 Input Wiring 4-18
4.3.2 Output Wiring 4-21
4.3.3 Cautions Regarding Units 4-22
4.4 Wiring the Connector Type I/O Units 4-23
4.4.1 Wiring the Connector Type Units 4-23
4.4.2 Connecting with Connector for Wire-pressed Terminal Cable 4-25
4.4.3 Connecting the Terminals 4-27
4.4.4 Connecting with Flat Cable Connector 4-32
4.5 Wiring the Terminal Block Type I/O Units 4-34
4.5.1 Wiring the Terminal Block Type Units 4-34
4.6 Safety Measures 4-36
4.6.1 Safety Instructions 4-36
4.6.2 Momentary Power Failures 4-37
4.6.3 Alarm Output 4-37
Chapter 5 Procedure Until Operation
5.1 Before Turning ON the Power 5-3
5.1.1 Check Items 5-3
5.1.2 Procedure Up To Operation 5-4
5.2 Programming with Programming Tool Software 5-5
5.2.1 Preparations 5-5
5.2.2 Configuration of Programming Tool Software 5-6
5.2.2.1 Parameters and Setting Methods 5-6
Chapter 6 FP2/FP2SH Operation
6.1 FP2 Operation 6-3
6.1.1 FP2 RAM and ROM Operations 6-3
6.1.1.1 Comparison of RAM and ROM Operations 6-3
6.1.1.2 Retaining the Data During Power Outages 6-4
6.1.1.3 Setting the Battery Error Warnings 6-4
6.2 FP2 RAM Operation 6-5
6.2.1 RAM Operation Method 6-5
6.2.2 Precautions When Operating the RAM 6-5
6.3 FP2 ROM Operation 6-6
6.3.1 ROM Operation Method 6-6
6.3.2 Verifying the ROM Contents in RAM Operation 6-7
6.4 Writing to ROM 6-8
6.4.1 Writing to EPROM Using Programming Tool Software 6-8
6.4.2 Writing to EPROM via FROM 6-10
6.5 FP2SH Operation 6-13
6.5.1 Comparison of RAM, ROM, and IC Memory Card Operation 6-13
6.5.2 Retaining Data If the Power Fails 6-14
6.5.3 Comment Function 6-16
6.6 FP2SH RAM Operation 6-17
6.6.1 RAM Operation Method 6-17
6.6.2 Precautions When Operating the RAM 6-18
6.7 FP2SH ROM Operation 6-19
6.7.1 ROM Operation Function 6-19
6.7.2 ROM Operation Method 6-20
6.7.3 Precautions When Operating the ROM 6-21
6.7.4 Checking the ROM Contents While Using RAM Operation 6-22
6.7.5 Sending Data from the RAM to the FROM 6-23
6.7.6 Writing Data to the ROM (AFP5209) (only the FP2-C2 can be installed) 6-25
6.7.7 Writing Data to the ROM: Using the FPWIN GR 6-27
6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P) 6-29
6.8.1 Operating Using the IC Memory Card 6-29
6.8.2 Creating Files for Automatically Run Programs 6-31
6.8.3 How the IC Memory Card is Operated 6-32
6.8.4 Transferring Data From the RAM to the IC Memory Card 6-33
Chapter 7 IC Memory Card
7.1 Using the IC Memory Card 7-3
7.1.1 Types of IC Memory Cards 7-3
7.1.2 Using the IC Memory Card 7-4
7.2 Formatting and Erasing 7-6
7.2.1 Program Memory Field and Expanded Memory Field 7-6
7.2.2 Procedure for Formatting the IC Memory Card 7-8
7.2.3 Procedure for Erasing the IC Memory Card 7-11
7.2.4 Data Storage Capacity of IC Memory Card 7-12
7.3 For Use as Program Memory 7-13
7.3.1 Writing the Program 7-13
7.3.2 Reading the Program 7-18
7.4 For Use as Expansion Memory 7-22
7.5 Menus Related to Tool Software 7-25
Chapter 8 Self-Diagnostic Function and Troubleshooting
8.1 Self-Diagnostic Function 8-3
8.1.1 LED Display for Status Condition 8-3
8.1.2 Operation When an Error Occurs 8-4
8.2 Troubleshooting 8-5
8.2.1 If the ERROR LED Lights 8-5
8.2.2 If the ALARM LED Lights 8-7
8.2.3 If the LED (POWER) of the Power Supply Unit Does Not Light 8-7
8.2.4 If Outputting Does Not Occur as Desired 8-8
8.2.5 If a Communication Error Message Appears 8-9
8.2.6 If a Protect Error Message Appears 8-10
Chapter 9 Maintenance
9.1 Replacement of Spare Parts 9-3
9.1.1 Backup Battery 9-3
9.1.2 Removable Terminal Block for Input and Output Units 9-7
9.2 Preventive Maintenance 9-8
Chapter 10 Specifications
10.1 Specifications 10-3
10.2 Relays, Memory Areas and Constants 10-10
10.3 Cable/Adapter Specifications 10-13
10.3.1 AFC8503/AFC8503S 10-13
10.3.2 AFC85305/AFC8531/AFC8532 (For extending for the tool port) 10-13
Chapter 11 Appendix
11.1 System Registers/Special Internal Relays/Special Data Registers 11-2
11.1.1 Table of System Registers for FP2/FP2SH/FP10SH 11-4
11.1.2 Table of Special Internal Relays for FP2/FP2SH/FP10SH 11-18
11.1.3 Special Data Registers for FP2/FP2SH/FP10SH/FP3 11-29
11.2 Table of Basic Instructions 11-54
11.3 Table of High-level Instructions 11-62
11.4 Table of Error codes 11-82
11.4.1 Table of Syntax Check Error 11-84
11.4.2 Table of Self-Diagnostic Error 11-86
11.4.3 Table of MEWTOCOL-COM Communication Error 11-93
11.5 MEWTOCOL-COM Communication Commands 11-95
11.6 Hexadecimal/Binary/BCD 11-96
11.7 ASCII Codes 11-97
Index I-1
Record of changes R-1

Before You Start

Operating environment
(Use the unit within the range of the general specifications when installing)

- Ambient temperatures: 0 to $+55{ }^{\circ} \mathrm{C}$
- Ambient humidity: $\mathbf{3 0 \%}$ to $\mathbf{8 5 \%}$ RH (at $25^{\circ} \mathrm{C}$, non-condensing)
- For use in pollution Degree 2 environment.
- Do not use it in the following environments.
- Direct sunlight
- Sudden temperature changes causing condensation.
- Inflammable or corrosive gas.
- Excessive airborne dust, metal particles or saline matter.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Direct vibration, shock or direct drop of water.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters,or any other equipment that would generate high switching surges. (100mm or more)

About static electricity

- Do not touch connector pins directly to prevent static electricity from causing damage.
- Always rid yourself of any static electricity before handling this product.

Wiring the Power Supply to the Control Unit

- Use a power supply wire that is thicker than $2 \mathbf{~ m m}^{2}$ (AWG14), and twist it.
- The unit has sufficient noise immunity against the noise generated on the power line.
However, it is recommended to take measures for reducing noise such as using a isolating transformer before supplying the power.
- Allocate an independent wiring for each power supplying line, input/output device and operating device.
If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.
- Use the same power supply system for the CPU backplane and expansion backplane so that they are turned on and off simultaneously.

Power supply sequence

- In order to protect the power supply sequence, make sure to turn off the PLC before the input/output power supply. If the input/output power supply is turned off before the PLC, or if the PLC is not shut off momentarily, the controller detects change of input level, and might conduct an unexpected operation.

Before Turning On the Power (w Chapter 4 and Chapter 5)

When turning on the power for the first time, be sure to take the precautions given below.

- When performing installation, check to make sure that there are no scraps of wiring, particularly conductive fragments, adhering to the unit.
- Verify that the power supply wiring, I/O wiring, and power supply voltage are all correct.
- Sufficiently tighten the installation screws and terminal screws.
- Set the mode selector to PROG. mode.

Before Entering a Program (${ }^{\circ}$ Chapter 5)

Be sure to perform a program clear operation before entering a program.
When using FPWIN GR software
Procedure:

1. Execute "FPWIN GR".
2. ON the "Online" menu, select "Online Edit Mode".
3. ON the "Edit" menu, select "Clear Program".

Battery

Do not install the battery when it is not used.
There is a possibility of leak if the battery remains discharged.

Special Precautions

With the FP2

The FP2 uses the term "module" when express the size of the unit or backplane.
The unit installation sizes come in two sizes: the basic 1-module size, and the 2-module size that is twice as wide.

The 1-module unit is the size that physically takes up the space of one guide on the backplane.
The 2-module unit is the size that physically takes up the space of two guides on the backplane.

Backplane Selection

Following two kinds of backplanes are available.

1) FP2 backplane (AFP25***) (Color of letters on the printed board: White)
2) FP2 backplane H type (AFP25****H) (Color of letters on the printed board: Yellow) These two backplanes cannot be used in combination.
Carefully select the type of backplanes before you order.
The selection of the backplane should be based on the total number of modules to be used in the system. In other words, the module number of the backplane must be greater than or equal to the total number of modules for the system. So be sure to select a backplane that allows the installation of all the required units.

When using the FP3, FP10SH, or Other Units

Backplane slot number

The backplane for the FP2 is specified by the total number of slots, i.e., 14-module type, including the connectors for the power supply unit and CPU. The number of connectors (or slots) remaining for the I/O units and intelligent units is then the module number of the backplane minus the number of modules for the power supply unit and CPU. Similarly, the number of connectors (or slots) remaining for the I/O units on expansion backplanes is the module number of the backplane minus the number of modules for the power supply unit.

Expansion backplanes

1. FP2 backplane

- Does not support expansion with 5-module type backplanes.
- Backplanes that are not the 5 -module type can be used as expansion backplanes.

2. FP2 backplane H type

- This backplane is functionally equivalent to the backplane for FP3.
- There are the basic backplane H type for installing I/O units and the expansion backplane H type for adding I/O units more.
- The basic backplane cannot be used as an expansion backplane.

Removal and Installation of Expansion Memory Unit

During removal and installation of expansion memory unit, the contents of the internal RAM may be erased, so be sure to save a copy of the program and data onto a disk before beginning the operations.
Use programming tool software (NPST-GR/FPWIN GR) for backup purposes.
Before rewriting the backed up program and data to the programmable controller, be sure to clear the program in the programmable controller.

With the FP2SH

Programming Tool Restrictions

The following tool software is required in order to program the FP2SH.
"FPWIN GR"
"NPST-GR" Ver. 4.6 or a subsequent version

Request Concerning Program Storage

To prevent the accidental loss of programs, the user should consider the following measures.

Drafting of documents

To avoid accidentally losing programs, destroying files, or overwriting the contents of a file, documents should be printed out and then saved. Disks should be organized to assure safe maintenance.

Specifying the password carefully

The password setting is designed to avoid programs being accidentally overwritten. If the password is forgotten, however, it will be impossible to overwrite the program even if you want to. Also, if a password is forcibly bypassed, the program is deleted. When specifying the password, note it in the specifications manual or in another safe location in case it is forgotten at some point.

Saving programs to the ROM

In order to prevent programs from being lost if the backup battery runs down, and to prevent accidental overwriting of programs in the workplace, we recommend saving programs entered in the RAM to the ROM. If the PLC is used over a long period of time, this concern applies particularly to programs that are built into the device when shipped.

[^0]
Compatibility with CPU unit, and Precautions

Comparison of Specifications

Items			FP2 CPU	FP2SH CPU	FP10SH CPU	
			$\begin{array}{\|l\|} \hline \text { FP2-C1, FP2-C1D, } \\ \text { FP2-C1A,FP2-C1SL } \end{array}$	$\begin{aligned} & \text { FP2-C2L, FP2-C2, } \\ & \text { FP2-C2P,FP2-C3P } \end{aligned}$	$\begin{aligned} & \hline \text { AFP } \\ & 6221 \mathrm{~V} 3 \end{aligned}$	$\begin{aligned} & \hline \text { AFP } \\ & 6211 \mathrm{~V} 3 \end{aligned}$
Controllable I/O points		Basic construction	Using Backplanes: Max. 768 points (12 modules) Using Backplanes H type: Max. 512 points (8 modules)		Max. 512 points	
		Expanded construction	Using Backplanes: Max. 1,600 points (25 modules) Using Backplanes H type: Max. 2,048 points (32 modules)		Max. 2,048 points	
		Using remote I/O system	Max. 2,048 points	Max. 8,192 points	Max. 8,192 points	
Program capacity		Internal memory	Approx. 16k steps	Approx. 60k steps (For FP2-C3P, approx. 120k steps)	Approx. 30k steps	
		Using expansion memory	Approx. 32k steps	-	Approx. 60k steps/ 120k steps	
Operation speed (typical value)		Basic instructions	From 0.35 $\mu \mathrm{s}$ per instruction	From 0.03us per instruction	From $0.04 \mu \mathrm{~s}$ per instruction	From $0.10 \mu \mathrm{~s}$ per instruction
		High-level instructions	From 0.93us per instruction	From 0.06 $\mu \mathrm{s}$ per instruction	From 0.08us per instruction	From 0.20us per instruction
Operation	Relays	External input (X)	2,048 points	8,192 points	8,192 points	
		External output (Y)	2,048 points	8,192 points	8,192 points	
		Internal relays (R)	4,048 points	14,192 points	14,192 points	
		Timer/counter (T/C)	Total 1,024 points	Total 3,072 points	Total 3,072 points	
		Link relays (L)	2,048 points	10,240 points	10,240 points	
		Pulse relays (P)	1,024 points	2,048 points	2,048 points	
		Alarm relays (E)	None	2,048 points	2,048 points	
	Memory	Data registers (DT)	6,000 words	10,240 words	10,240 words	
	areas	File registers (FL)	0 to 14,333 words (when expanding: 0 to 30,717 words)	FP2-C2L: 32,765 words FP2-C2, FP2-C2P, FP2-C3P: 32,765 words $\times 3$ banks	32,765 words	
		Link data registers (LD)	256 words	8,448 words	8,448 words	
		Timer/counter set value area (SV)	1,024 words	3,072 words	3,072 words	
		Timer/counter elapsed value area (EV))	1,024 words	3,072 words	3,072 words	
		Index registers (IO to ID)	14 words	14 words $\times 16$ banks	14 words $\times 16$ banks	
Comment input function			Optional function	Built-in (Internal) function	Optional function	
Clock/calendar function			Optional function	Built-in (Internal) function	Built-in (Internal) function	
ROM operation function			Optional function	FP2-C2L, FP2-C2: Optional function FP2-C2P, FP2-C3P: Built-in (Internal) function	Optional function	

Compatibility of FP2SH and FP2, and Precautions

Hardware Compatibility

Most of the units and related products used with the FP2SH can be used with the FP2, but the following differences should be noted.

Some optional memory units cannot be used.

The only memory unit that can be used with the FP2SH CPU FP2-C2 or FP2-C2L" is the "Part number FP2-EM7 or Model number AFP2208".
The FP2 memory units "Part numbers FP2-EM1, FP2-EM2, FP2-EM3, and FP2-EM6" cannot be used.

The types of optional ROMs are different.

The only ROM that can be used with the FP2SH CPU unit "FP2-C2" is the "Model number AFP5208 or AFP5209". The nonvolatile memory implemented memory unit "Model number AFP2208" can be also used.
The FP2 ROM "Part number AFP2204" and "Part number AFP2205" cannot be used.
The backup battery types are different.
The backup battery for the FP2SH CPU is the "Part number AFP8801" battery with a connector.
The "Part number AFC8801" battery for the FP2 CPU cannot be used.
The calendar timer and comment memories have been installed in advance.
These have already been installed in the FP2SH CPU, and no optional units are needed.

ROM operation functions in the FP2SH

CPUs that support IC memory cards (FP2-C2P and FP2-C3P) have an internal FROM used as a program memory. The internal FROM cannot be replaced.

Software Compatibility

The FP2SH has a higher level of compatibility than the FP2, so there are no functions that cannot be used with the FP2SH. Other factors, such as the number of device points, should be confirmed by checking the specifications comparison table on the previous page.

IC memory cards for the FP2SH

The existing model number becomes the one to be discontinued because of the termination of manufacturing IC memory cards by the parts manufacturer. When placing a new order, specify the new product number.

Termination of Production

Type	Memory capacity	Model No.	Battery type
SRAM	2 MB	AIC52000	Internal secondary battery (Rechargeable type)

New product

Type	Memory capacity	Model No.	Battery type
SRAM	2 MB	AFP2209	Lithium Battery (Interchangeable type)

For AFP2209

- An interchangeable lithium battery is used. When you use for the first time, install the battery included.
For AIC52000
- Memory backup of the SRAM type of IC memory card (AIC52000) Is handled by an internal secondary battery. When the battery is used for the first time, power must be supplied for at least 24 hours to charge it fully. When the battery is fully charged, data is backed up for more than three months with out the power being turned on. Normally, the card should be installed in the PLC and power supplied when using it. Failing to charge the battery periodically can reduce the backup period and the service life of the battery. The backup battery cannot be replaced.

Compatibility of FP2/FP2SH and FP10SH, and Precautions

Hardware Compatibility

The unit, backplane, and other components are not compatible.
The components for the FP2 are used with the FP2SH.

When using the FP2 backplane (AFP25**), the maximum number of expansion points is lower.

With the FP10SH and FP2 backplane H type (AFP25**H), up to three expansion boards can be used, and a maximum of 2048 points controlled, but if using the FP2 backplane with the FP2/FP2SH, only one expansion board can be used, and a maximum of 1600 points controlled.

Different types of IC memory cards are used.

The only type of IC card that can be used with the "Part number FP2-C2P and FP2-C3P" FP2SH CPU is the IC memory card (small PC card). The IC memory card for the FP10SH cannot be used.

Software Compatibility

With the FP2SH, in comparison with the FP10SH, there are no functions that cannot be used. For other detailed specifications, check the specifications comparison table on the previous page.

Programming Tool Restrictions

Restrictions on usable programming tools depending on the units

Type of programming tool		Type of unit	
		FP2	FP2SH
Windows software	FPWIN GR Ver. 2	Used Note 1)	$\begin{aligned} & \hline \text { Used } \\ & \text { Note 1) } \end{aligned}$
	FPWIN GR Ver. 1	Used Note 1)	Used Note 1)
Windows software Conforms to IEC61131-3	FPWIN Pro Ver. 6	Used	$\begin{array}{\|l\|} \hline \text { Used } \\ \text { Note 2) } \end{array}$
	FPWIN Pro Ver. 5	Used Note 3)	Used Note 3)
Handy programming unit	AFP1113V2 AFP1114V2	Not used	Not used
	AFP1113 AFP1114	Not used	Not used
	AFP1111A AFP1112A AFP1111 AFP1112	Not used	Not used
FP Memory Loader	AFP8670 AFP8671	Used	Used Note 4)

Note 1) FPWIN GR Ver. 2.91 or later version is necessary to use the FP2SH CPU (32k type). FPWIN GR Ver.2.40 or later version is necessary to use the multi communication unit. FPWIN GR Ver.2.71 or later version is necessary to use the MEWNET-VE Link Unit. The FNS Unit and FMU Unit cannot use to FPWIN GR.
Note 2) FPWIN Pro Ver.6.3 or later version is necessary to use the FP2SH CPU (32k type).
Note 3) FPWIN Pro Ver.5.02 or later version is necessary to use the multi communication unit. -FPWIN Pro Ver.5.24 or later version is necessary to use the MEWNET-VE Link Unit.
-FPWIN Pro Ver.5.24 or later version is necessary to use the FNS Unit.
-FPWIN Pro Ver.5.3 or later version is necessary to use the FMU Unit.
Note 4) FP Memory Loader Ver.2.1 or later version is necessary to use the FP2SH CPU (32k type). When using FP2SH CPU (120k type), only the 1st program and comments can be transferred.
Note: Precautions concerning version upgrade

- In case of using FPWIN GR Ver.1, please purchase upgrade model

FPWIN GR Ver. 2.

- FPWIN GR Ver. 2.0 can be upgraded to Ver. 2.1 or later free of charge at our web site.
- FPWIN Pro Ver. 6.0 can be upgraded to Ver. 6.1 or later free of charge at our web site.

Chapter 1

Overview

1.1 System Configuration

1.1.1 Basic Configuration by Number of Slots

The building block scheme allows you to combine units as desired.
Five types of backplanes and Two types of backplanes H types are available for the FP2/FP2SH. A variety of input/output units can be installed as desired on the backplane.
Although most of the I/O units and intelligent units can be combined freely in the layout, you should check the following three points when selecting your units:

- Restrictions on unit types section 1.2.2.1
- Limitations on the internal current consumption section 1.2.2.2
- Limitations on the number of modules of the backplane page 1-4

FP2 backplane

5 modules

9 modules

7 modules

12 modules

14 modules

FP2 backplane H type

Basic backplane (11 modules)

Expansion backplane (10 modules)

Following two kinds of backplanes are available.

1) FP2 backplane (AFP25***)
2) FP2 backplane H type (AFP25****H)

These two backplanes cannot be used in combination.
Carefully select the type of backplanes before you order.

1.1 System Configuration

Restriction on the number of modules of the backplane (For master backplane)

The number of units that can be installed is determined by the number of modules of the backplane used, the power supply unit to be installed, and the CPU.

1 module type CPU	Standard type CPU
2 modules type CPU	CPU with 64-point input, CPU with S-LINK
1 module type power supply unit	$100 \mathrm{~V} 2.5 \mathrm{~A}, 200 \mathrm{~V} 2.5 \mathrm{~A}$
2 modules type power supply unit	100 to $240 \mathrm{~V} 5 \mathrm{~A}, 24 \mathrm{~V}$ DC 5A

CPU backplane

FP2 backplane

	5-module type 0001	7-module type	$\begin{gathered} 9 \text {-module type } \\ 0.00000010 \end{gathered}$	$\begin{aligned} & 12 \text {-module type } \\ & 0000000001 \end{aligned}$	(14-module type
1 module type CPU and 1 module type power supply unit	3 slots free	5 slots free \square	7 slots free		12 slots free
2 modules type CPU and 1 module type power supply unit	2 slots free	4 slots free \square	6 slots free		
1 module type CPU and 2 module type power supply unit	2 slots free	4 slots free \square	6 slots free	9 slots free \square	11 slots free 1800000010
2 modules type CPU and 2 module type power supply unit	1 slot free	3 slots free	5 slots free	8 slots free 	

* slots free: Number of slots where units can be installed

FP2 backplane H type

A maximum of eight I/O units (including the unit built in the CPU) can be controlled per backplane. Even if further I/O units are installed, they are not recognized.
Note) When using the CPU unit with S-LINK, seven slots are free, however, the units actually usable are only six. (Refer to Chapter 3 I/O Allocation.)

1.1.2 Expansion of Backplane

FP2 backplane

CPU backplane

Expansion backplane

Expansion cable

Only one backplane can be added-on for expansion.
Expansion is simply connecting a new backplane with a special expansion cable. Any backplane other than a 5 -module type can be used for expansion.

Notes

- A 5-module type backplane cannot be expanded.
- A 5-module type backplane cannot be added on for expansion.
- Only one backplane can be added-on for expansion.
- A power supply unit is also necessary on an expansion backplane.
* next page
1.1 System Configuration
- Do not install a CPU on an expansion backplane.
- There is no need to make the number of modules on the expansion backplane equal to the number of modules on the CPU backplane.
FP2 backplane H type

The basic FP2 backplane H type that the CPU unit can be installed and the expansion backplane H type that only the I/O units and the intelligent I/O units can be installed are available.
A maximum of eight I/O units (including the unit built in the CPU) can be controlled per backplane. Even if further I/O units are installed, they are not recognized.
Up to three expansion backplanes can be added on for expansion.
Use the board No. setting switches on the board to distinguish the expansion backplane.
A power supply unit is also necessary on an expansion backplane.

Restriction on the number of modules of the backplane (For expansion backplane)

The number of units that can be installed is determined by the number of modules of the backplane used and the power supply unit to be installed.

FP2 backplane

		9-module type \square	12-module type \square	14-module type \square
1 module type power supply unit	6 slots free \square			\square
2 module type power supply unit	5 slots free	7 slots free \square		

* slots free: Number of slots where units can be installed

FP2 backplane H type

10 -module type	
1 module type power supply unit	8 slots free
2 module type power supply unit	8 slots free

Note) Although the connectors for installing I/O units are free with a 1-module type power supply unit, they cannot be used.

Expansion cable

Order number	Length	Ferrite core
FP2-EC	60 cm	1
FP2-EC2	2 m	2

Note) With the backplalne H type, the total cable length can be arranged within 3.2 m .

1.2 Unit Types and Combinations

1.2 Unit Types and Combinations

1.2.1 Line-Up of Backplanes and Units

1-8

Input，Output and I／O mixed units

罝成	16－point DC input （FP2－X16D2） 16－point transistor output NPN type（FP2－Y16T） 16－point transistor output PNP type（FP2－Y16P） 6－point relay output type （FP2－Y6R） 16－point relay output type （FP2－Y16R）	舞隺	32－point DC input （FP2－X32D2）		64－point DC input（FP2－X64D2） 64－point transistor output NPN type	
		凬	32－point transistor out－		（FP2－Y64T）	
		$\\|$	put NPN type （FP2－Y32T）	1	64－point transistor output PNP type （FP2－Y64P）	
			32－point transistor out－ put PNP type		32－point input／32－point output NPN type（FP2－XY64D2T）	
			（FP2－Y32P）		32－point input／output（NPN）with on pulse catch input（FP2－XY64D7T）	
					32－point input／32－point output PNP type（FP2－XY64D2P）	
					32－point input／output（PNP）with on pulse catch input（FP2－XY64D7P）	

1.2 Unit Types and Combinations

1.2.2 Combinations That Can be Used and Restrictions

1.2.2.1 Restrictions on Unit Types

Limitations on Combining Link Units

Unit type and mode	When CPU unit is FP2	When CPU unit is FP2SH
Computer communication unit	Only one unit (see note)	Can be installed within 5 units in combination with W link, CCU and MCU (PC link mode).
Multi-wire Link unit (MEWNET-W mode)	Can be installed within 3 units in combination with W link, CCU and MCU (PC link mode).	
	Can be installed within 2 units in combination with MCU in PC (PLC) link mode.	
Multi-wire Link unit (MEWNET-W2 mode) ET-LAN unit	Up to 3 units can be used. Up to 2 units out of 3 , when including PC (PLC) link.	Up to 8 units can be used. Up to 2 units out of 8 , when including PC (PLC) link.
Multi Communication unit (PC (PLC) link mode)	Can be installed within 3 units in combination with W link, CCU and MCU.	Can be installed within 5 units in combination with W link, CCU and MCU.
	Can be installed within 2 units in combination with W link unit in PC (PLC) link mode.	
Multi Communication unit (Computer link mode)	Up to 8 units can be used.	
MEWNET-VE Link Unit	Not Available	Can be installed within 2 units in combination with Multi Communication Unit.

Note

Depending on the location of the connected ports and the commands used for communication, up to 3 units can be used. For more details, refer to the Computer Communication Unit Manual.

$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Out- } \\ \text { put } \\ \text { unit } \end{array} \end{array}$	$\mid$$\left\lvert\, \begin{aligned} & \text { \|mixec } \\ & \text { nuit } \end{aligned}\right.$	Ana- log input unit	$\begin{aligned} & \text { Ana- } \\ & \text { log } \\ & \text { out } \\ & \text { put } \\ & \text { nuit } \end{aligned}$	$\begin{aligned} & \text { High } \\ & - \\ & \text { spe } \\ & \text { ed } \\ & \text { cou } \\ & \text { nter } \\ & \text { unit } \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Pulse } \\ \text { Yo } \end{array} \\ \text { unit } \end{array}$	Posi tion- ing unit (PP2 /PP4)	Posi- tion- tion- ing (Mul- ti- tion type)	Posi-tion-ingunitRTEX	Posi-tioningunit unitInter-polatype	$\begin{array}{\|l\|l} \hline \text { Serial } \\ \text { datia } \\ \text { unit } \end{array}$	$\begin{aligned} & \text { com- } \\ & \text { put- } \\ & \text { per } \\ & \text { com- } \\ & \text { miu- } \\ & \text { tica- } \\ & \text { iunit } \end{aligned}$	Link unit	Multi-wire link unit			$\begin{aligned} & \text { ET- } \\ & \text { AT-N } \\ & \text { unit } \end{aligned}$	$\begin{aligned} & \text { Mul- } \\ & \text { ti } \\ & \text { com- } \\ & \text { mul } \\ & \text { nica- } \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { ME } \\ & \text { WE } \\ & \text { WET } \\ & \text { NEEE } \\ & \text { Link } \\ & \text { Unit } \end{aligned}$	FNS	FMUunit
													$\begin{array}{\|l\|} \hline \text { MEW- } \\ \text { NET- } \\ \text { F } \\ \text { mode } \end{array}$	MEW- NET- mode	MEW NET- w2 mode					
A	A	A	A	$\begin{aligned} & \hline \mathrm{A} \\ & { }^{\prime} 1 \end{aligned}$	$\begin{gathered} \hline \mathrm{A} \\ { }^{\prime} 1 \end{gathered}$	A	A	A	A	A	$\begin{gathered} \hline \mathrm{A} \\ \text { *2 } \end{gathered}$	A	$\begin{gathered} \text { A } \\ \text { *3 } \end{gathered}$	$\begin{aligned} & \hline \text { A } \\ & \text { *2 } \end{aligned}$	$\begin{gathered} \hline \text { A } \\ \text { *2 } \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ \text { *2 } \end{gathered}$	$\begin{gathered} \hline \text { A } \\ \text { *2 } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { *2 } \end{gathered}$	A	A
A	A	A	A	A *1 *5	$\begin{gathered} \hline \mathrm{A} \\ \star_{1} \\ { }^{2} \end{gathered}$	A	A	A	A	A	$\begin{gathered} \mathrm{N} / / \\ \mathrm{A} \end{gathered}$	A	$\begin{gathered} \text { A } \\ \text { *3 } \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { A } \\ \text { *2 } \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	A	A
A	A	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ * 6 \end{gathered}$	$\begin{gathered} \hline \text { A } \\ \text { *6 } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { *7 } \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	A	$\begin{gathered} \hline \mathrm{N} / / \\ \mathrm{A} \end{gathered}$	$\begin{aligned} & \hline \mathrm{A} \\ & \star 8 \end{aligned}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{N} / \\ \mathrm{A} \end{array}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \hline \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$			
A	A	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { A } \\ * 6 \end{gathered}$	$\begin{gathered} \text { A } \\ \text { *6 } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { *7 } \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \text { N/ } \\ \text { A } \end{gathered}$	A	$\begin{gathered} \mathrm{N} / / \\ \mathrm{A} \end{gathered}$	$\begin{gathered} \hline \mathrm{A} \\ \star 8 \end{gathered}$	$\begin{gathered} \mathrm{N} / \\ \mathrm{A} \end{gathered}$							

A: Available N/A: Not available

1) When "Mode B: Unit with interrupt function" has been specified, the unit will be treated as interrupt unit, and 8 interrupts per unit will be available for use. However, when "Mode B" has been set for the unit, 2 units can be used with 1 CPU unit. When "Mode C: Intelligent unit that generate interrupts" has been specified, and 1 interrupt per unit will be available for use. However, when "Mode C" has been set for the unit, 8 units can be used with 1 CPU unit.
2) Check the limitations on combining link units given below.
3) In the MEWNET-F mode, up to four units can be used counting the CPU and expansion sides.
4) With the backplane H type, the total expansion cable length can be arranged within 3.2 m .
5) The unit cannot be installed on the 31st slot (last slot) when using the H-type backplane.
6) The interrupt function is not available for the backplane on the slave station system.
7) With the backplane on the slave station system, the time taken from the startup until the completion of positioning should be longer than a scan time.
8) With the backplane on the slave station system, I/O points cannot be set including 96 input points and 96 output points.

1.2 Unit Types and Combinations

1.2.2.2 Limitations on Current Consumption

Internal supply power (5V DC)

The 5V DC power used for driving the internal circuit of each unit is supplied from the power supply unit through the internal bus of the backplane.

External supply power (24V DC)

The 24 V DC power supply used as the input power supply of the input units and the output circuit driving power of the output units are supplied from the external terminal of each unit.

For 24 V power supply, commercially available power supply equipment is used.

Combining units and selecting a backplane

The current consumed by each unit is shown in the following pages.
Give consideration to the combination of units so that the rated capacity of 5 V DC and 24V DC power supplies should not exceeded.

Example of current consumption calculation

The table below shows the combination of typical units on a 9-module type backplane.

Type	Number of units and backplane used	Current consumption at 5 V DC (mA)	Current consumption at 24V DC (mA)
CPU (FP2-C1)	$\mathbf{1}$	410	0
Backplane (FP2-BP09)	$\mathbf{1}$	60	0
Input unit (FP2-X16D2)	$\mathbf{3}$	$60 \times 3=180$	$8 \times 16 \times 3=384$
Output unit (FP2-Y16R)	$\mathbf{4}$	$120 \times 4=480$	$160 \times 4=640$
Total current consumption		1130	1024

Table of current consumption at 5V DC

Type				Part number	Current consumption at 5V DC (mA)
FP2 CPU				FP2-C1	410 or less
				FP2-C1D	530 or less
				FP2-C1SL	630 or less
				FP2-C1A	1060 or less
FP2SH CPU				FP2-C2L	750 or less
				FP2-C2	750 or less
				FP2-C2P	750 or less
				FP2-C3P	750 or less
Backplane				FP2-BP05	5 or less
				FP2-BP07	60 or less
				FP2-BP09	60 or less
				FP2-BP12	60 or less
				FP2-BP14	60 or less
Backplane H type				FP2-BP11MH	5 or less
				FP2-BP10EH	60 or less
Input unit	DC input	16-point terminal type, 12 to 24V DC		FP2-X16D2	60 or less
		32-point connector type, 24V DC		FP2-X32D2	80 or less
		64-point connector type, 24V DC		FP2-X64D2	100 or less
Output unit	Relay output	6-point terminal type		FP2-Y6R	50 or less
		16-point terminal type		FP2-Y16R	120 or less
	Transistor output	16-point terminal NPN type		FP2-Y16T	100 or less
		32-point connector NPN type		FP2-Y32T	130 or less
		64-point connector NPN type		FP2-Y64T	210 or less
		16-point terminal PNP type		FP2-Y16P	80 or less
		32-point connector PNP type		FP2-Y32P	130 or less
		64-point connector PNP type		FP2-Y64P	210 or less
I/O mixed unit	32-point 24V DC input/32-point connector NPN output type			FP2-XY64D2T, FP2-XY64D7T	160 or less
	32-point 24V DC input/32-point connector PNP output type			FP2-XY64D2P, FP2-XY64D7P	160 or less
Intelligent unit	Analog input unit (Voltage/current type)			FP2-AD8VI	400 or less
	Analog input unit (Channel type)			FP2-AD8X	300 or less
	RTD input unit			FP2-RTD	300 or less
	Analog output unit			FP2-DA4	600 or less
	High-speed counter unit	NPN		FP2-HSCT	450 or less
		PNP		FP2-HSCP	450 or less
	Pulse I/O unit	NPN		FP2-PXYT	500 or less
		PNP		FP2-PXYP	500 or less
	Positioning unit	2-axis type		FP2-PP2	225 or less
		4-axis type		FP2-PP4	400 or less
	Positioning unit (Multifunction type)	2-axis type	Transistor output type	FP2-PP21	200 or less
			Line driver output type	FP2-PP22	200 or less
		4-axis type	Transistor output type	FP2-PP41	350 or less
			Line driver output type	FP2-PP42	350 or less
	Positioning unit RTEX	2-axis type		FP2-PN2AN	300 or less
		4-axis type		FP2-PN4AN	300 or less
		8-axis type		FP2-PN8AN	300 or less
	Positioning unit (Interpolation type)	2-axis type	Transistor output type	FP2-PP2T	300 or less
			Line driver output type	FP2-PP2L	300 or less
		4-axis type	Transistor output type	FP2-PP4T	300 or less
			Line driver output type	FP2-PP4L	300 or less
	Serial data unit			FP2-SDU	60 or less
	Multi communication unit with Communication block (1-unit or 2-unit)			FP2-MCU	480 or less

next page
1.2 Unit Types and Combinations

Type				Part number	Current consumption at 5V DC (mA)
Intelligent unit	C.C.U.			FP2-CCU	60 or less
	S-LINK unit			FP2-SL2	130 or less
	Multi-wire link unit			FP2-MW	220 or less
	Remote I/O Slave Unit			FP2-RMS	150 or less
	ET-LAN unit			FP2-ET1	670 or less
	MEWNET-VE Link unit			FP2-VE	670 or less
	FNS unit	FNS unit		FP2-FNS	55 or less
		FP-FNS Block	PROFIBUS	AFPN-AB6200	230 or less
			Device Net	AFPN-AB6201	65 or less
			CAN open	AFPN-AB6218	65 or less
	FMU unit	PROFIBUS		FP2-DPV1-M	450 or less
		Device Net		FP2-DEV-M	150 or less
		CAN open		FP2-CAN-M	450 or less

Table of current consumption at 24V DC

Type			Part number	Current consumption at	
Input unit	DC input	16-point terminal type, 12 to 24V DC	FP2-X16D2	8 or less per one point	
		32-point connector type, 24V DC	FP2-X32D2	4.3 or less per one point	
		64-point connector type, 24V DC	FP2-X64D2	4.3 or less per one point	
Output unit	Relay output	6-point terminal type	FP2-Y6R	70 or less	
		16-point terminal type	FP2-Y16R	160 or less	
	Transistor output	16-point terminal NPN type	FP2-Y16T	120 or less	
		32-point connector NPN type	FP2-Y32T	140 or less	
		64-point connector NPN type	FP2-Y64T	250 or less	
		16-point terminal PNP type	FP2-Y16P	70 or less	
		32-point connector PNP type	FP2-Y32P	150 or less	
		64-point connector PNP type	FP2-Y64P	270 or less	
1/O mixed unit	32-point 24V DC input/32-point connector NPN output type		$\begin{aligned} & \text { FP2-XY64D2T, } \\ & \text { FP2-XY64D7T } \end{aligned}$	Input: 4.3 or less per one point	
			Output: 120 or less		
	32-point 24V DC input/32-point connector PNP output type			$\begin{aligned} & \hline \text { FP2-XY64D2P, } \\ & \text { FP2-XY64D7P } \end{aligned}$	Input: 4.3 or less per one point
			Output: 130 or less		

Notes

- The input unit displays the current flowing to the internal circuit. The other units display the current value required to drive the internal circuit. This value does not include the load current of the output unit.
- Refer to the manual of the particular unit you are using to confirm the current consumed at 24 V by the S-LINK units, Positioning units, High-speed counter units and Pulse I/O units.

1.3 Expansion Function

1.3.1 Computer Link

Since a COM (RS232C) port and TOOL (RS232C) port comes standard on the CPU for the FP2/FP2SH, direct communication with the computer can be achieved without the addition of any intelligent units.
Using a host computer program, the relay conditions and register contents of the CPU can be read and written.
With communications from a host computer, communication programs are unnecessary on the CPU side.

1.3 Expansion Function

Table of specifications

Item	Description	
	1:1 communication	1:N communication
Communication method	Half duplex	Half duplex
Synchronization method	Start-stop synchronous system	
Communication path	RS232C cable	Two-core cable (VCTF $0.75 \mathrm{~mm}^{2} \times 2 \mathrm{C}$)
Transmission distance	Max. 15m/49.2ft.	Max. 1200m/3,937ft.
Transmission speed (Baud rate)	1200bps/2400bps/4800bps/9600bps/ 19200bps/38400bps/57600bps/115.2Kbps	9600bps/19200bps
Transmission code	ASCII	
Transmission format	Stop bit: 1 bit/2 bits Parity check: none/even/odd Character bits: 7 bits/8 bits	

Necessary devices in configuration

1:1 communication	1:N communication
FP2/FP2SH	FP2/FP2SH
Commercially available computer	Commercially available computer
Commercially available RS232C cable	Commercially available RS232C cable
(AFB85813/AFB85853 or equivalent)	(AFB85813/AFB85853 or equivalent)
	C-NET adapter (AFP8536/AFP8532) $\times 1$ piece
	C-NET adapter S2 type (AFP15402) \times number of PLC
	Two-core cable (VCTF 0.75mm²)

1.3.2 Connection of MODEM

1:1 communication

Connections to a MODEM can be made using the COM port.

1:N communication

Using the C-NET adapter enables MODEMs to be connected for multiple programmable controller.

1.3 Expansion Function

Table of specifications

Item	Description	1:N communication
	1:1 communication	
Communication method	Half duplex	
Synchronization method	Start-stop synchronous system	
Transmission speed (Baud rate)	$2,400 \mathrm{bps} / 4,800 \mathrm{bps} / 9,600 \mathrm{bps} / 19,200$ bps	$9,600 \mathrm{bps} / 19,200 \mathrm{bps}$
Transmission code	ASCII	
Transmission format	Character bit: 7 bits, parity check: odd and stop bit: 1 bit Character bit: 8 bits, parity check: none and stop bit: 1 bit	

Necessary devices in configuration

$1: 1$ communication	$1: \mathrm{N}$ communication
FP2/FP2SH	FP2/FP2SH
Commercially available computer	Commercially available computer
MODEM	MODEM
Commercially available RS232C cable	Commercially available RS232C cable
* When using the TOOL port, an FP PC cable M5	C-NET adapter (AFP8536/AFP8532) $\times 1$ piece
type (AFC8513) and a self-made cable are nec-	C-NET adapter S2 type (AFP15402) \times number of PLC
essary.	Two-core cable (VCTF $\left.0.75 \mathrm{~mm}^{2}\right)$

1.4 Programming Tools

1.4.1 Tools Needed for Programming

Necessary tools

(1) Programming tool software

This is a program editing, debugging and document creating software package that can be used with all programmable controllers in the FP series.
(2) FP PC cable

This cable needed for connection between the FP2/FP2SH and the computer.
When connecting to a computer (IBM PC/AT or 100\% compatible), use a commercially available adapter.(section 1.4.2)
For the following, use commercially available products.
(3) Commercially available computer

1.4.2 Software Environment and Suitable Cable

Standard ladder diagram tool software FPWIN-GR Ver. 2

Type of software		OS (Operating system)	Hard disk capacity	Product No.
FPWIN GR Ver. 2 English-language menu	Full type	Windows $® 98$ Windows $®$ Me Windows $® 2000$ Windows $®$ XP Windows Vista $®$	40 MB or more	AFPS10520
	Upgraded version		AFPS10520R	

1) The upgrade version is not available for Ver.6.
2) Ver. 6.0 can be upgraded to Ver. 6.1 or later free of charge at our web site

Type of software	OS (Operating system)	Hard disk capacity	Product No.
FPWIN GR Ver. 6 English-lan- guage menu	Windows $\circledR 2000$ Windows $®$ XP Windows Vista \circledR	100MB or more	AFPS50560

1) The upgrade version is not available for Ver.6.
2) Ver. 6.0 can be upgraded to Ver. 6.1 or later free of charge at our web site

Type of computer and suitable cable
For the connection between a computer (RS232C) and the control unit (RS232C)
D-sub connector cable

PC side connector	PLC side connector	Specifications	Product No.
D-sub 9-pin	Mini DIN round 5-pin	L type (3 m)	AFC8503
	Mini DIN round 5-pin	Straight type (3 m)	AFC8503S

Note
A USB/RS232C conversion cable is necessary to connect with a personal computer without a RS232C port using a PC connection cable.

1.4.3 Tools Needed for ROM Creating

When Creating ROM with a Commercially Available ROM Writer with Optional Memory (FROM)

Necessary tools

(1) Programming tool software and cable (w section 1.4.1)

Use a commercially available computer installed with the programming tool software and an FP PC cable.
(2) Optional memory FROM

For FP2, FP2-EM4 (SST-29EE010-120-4C-PH or equivalent, SILICOM STORAGE TECHNOLOGY, INC.)
For FP2SH, AFP5208 (SST-29EE020-150-4C-PH or equivalent, SILICOM STORAGE TECHNOLOGY, INC.)
(3) Optional memory EPROM

For FP2, FP2-EM5 (M27C1001-12F1 or equivalent, SGS-THOMSON MI-
CROELECTRONICS)
For FP2SH, AFP5209 (M27C2001-150F1 or equivalent, SGS-THOMSON MICROELECTRONICS)
For the following, use commercially available products.
(4) Commercially available ROM writer

A ROM writer than can be used with memories (2) and (3).

Note

1) The above explanation describes the case where the memory unit is used in combination with the F-ROM and EP-ROM. As the nonvolatile memory has been implemented in the memory unit (Model number AFP2208), a commercial ROM writer cannot be used for writing.
2) The parts for the optional memory to be used differ depending on FP2 or FP2SH.

When Creating ROM with Programming Tool Software and a Commercially Available ROM Writer

Necessary tools

(1) Programming tool software (- section 1.4.1)

Use a commercially available PC installed with the programming tool software.
(2) Optional memory EPROM

For FP2, FP2-EM5 (M27C1001-12F1 or equivalent, SGS-THOMSON MICROELECTRONICS)
For FP2SH, AFP5209 (M27C2001-150F1 or equivalent, SGS-THOMSON MICROELECTRONICS)

For the following, use commercially available products.
(3) Commercially available ROM writer

A ROM writer than can be used with memory (2).
(4) Commercially available centronics cable or commercially available RS232C cable
Use a cable that conforms with the specifications of the ROM writer.

1) The above explanation describes the case where the memory unit is used in combination with the EP-ROM. As the nonvolatile memory has been implemented in the memory unit (Model number AFP2208), a commercial ROM writer cannot be used for writing.
2) The parts for the optional memory to be used differ depending on FP2 or FP2SH.

Chapter 2

Parts and Functions

2.1 Backplane and Expansion Cable

2.1.1 Backplane

Parts Terminology and Functions

(1) Backplane mounting holes
for mounting the backplane to the control panel. Use M4 screw for the mounting.
(2) Unit guides

Align the tab on the unit with this guide when installing the unit to the backplane. For use as the basic backplane (CPU backplane), from the left side of the backplane, install the power supply unit, CPU, I/O units, and intelligent units, in this order.
For use as an expansion backplane, from the left side of the backplane, install the power supply unit, I/O units, and intelligent units, in this order.
(3) Connector for various units Install a CPU, input, or output unit. When installing a CPU, be sure to install it next to a power supply unit.
(4) DIN rail attachment lever allows attachment to a DIN rail.
(5) Unit installation holes
for installing the unit to the backplane. Use the screw supplied with the unit for installation.
(6) Connector for power supply unit
(7) Connector for expansion cable
for more details regarding the cable connecting, refer to section 4.1.3.
This connector is not present on a 5-module type backplane.

2.1 Backplane and Expansion Cable

Type of Backplane

Type	Use	Number of module	Part number	Weight
5-module type	Basic system only	5	FP2-BP05	Approx. 180g
7-module type	Basic and expansion system	7	FP2-BP07	Approx. 280g
9-module type		9	FP2-BP09	Approx. 350g
12-module type		12	FP2-BP12	Approx. 470g
14-module type		14	FP2-BP14	Approx. 530g

2.1.2 Basic Backplane H Type (FP2-BP**MH)

Parts Terminology and Functions

(1) Backplane mounting holes for mounting the backplane to the control panel. Use M4 screw for the mounting.
(2) Unit guides

Align the tab on the unit with this guide when installing the unit to the backplane.
From the left side of the backplane, install the power supply unit, CPU, I/O units, and intelligent units, in this order.
(3) Connector for various units Install various unit.
(4) DIN rail attachment lever allows attachment to a DIN rail.
(5) Unit installation holes for installing the unit to the backplane. Use the screw supplied with the unit for installation.
(6) Connector for power supply unit
(7) Connector for expansion cable
for more details regarding the cable connecting, refer to section 4.1.3.
(8) Connector for CPU unit

The position to install the CPU unit is fixed.

Type of Backplane

Type	Use	Number of module	Part number	Weight
11-module type	Basic system only	11	FP2-BP11MH	Approx. 470g

[^1]
2.1 Backplane and Expansion Cable

2.1.3 Expansion Backplane H Type (FP2-BP**EH)

Parts Terminology and Functions

(1) Backplane mounting holes
for mounting the backplane to the control panel. Use M4 screw for the mounting.
(2) Unit guides

Align the tab on the unit with this guide when installing the unit to the backplane. From the left side of the backplane, install the power supply unit, I/O units, and intelligent units, in this order.
(3) Connector for various units Install I/O unit.
(4) DIN rail attachment lever allows attachment to a DIN rail.
(5) Unit installation holes
for installing the unit to the backplane. Use the screw supplied with the unit for installation.
(6) Connector for power supply unit
(7) Connector for expansion cable
for more details regarding the cable connecting, refer to section 4.1.3.
(8) Board number setting switch
is used to set a bord number for the expansion backplane. I/O numbers are assigned according to the board number set the board numbers in increasing order, 1, 2 and 3 from the board close to the basic backplane.
(Do not set 4 or higher numbers as proper operation cannot be guaranteed).

Type of Backplane

Type	Use	Number of module	Part number	Weight
10-module type	Expansion system only	10	FP2-BP10EH	Approx. 470g

Note

The color of letters on the printed board is yellow to make easier to distinguish the FP2 backplane H type from the FP2 backplane.

2.1.4 Expansion Cable

Order number	Length	Ferrite core	Weight
FP2-EC	60 cm	1	Approx. 200 g
FP2-EC2	2 m	2	Approx. 400 g

Note) With the backplalne H type, the total cable length can be arranged within 3.2 m .

Note
Connect the connector on the side of the ferrite core to the CPU backplane.

2.2 FP2 CPU

2.2 FP2 CPU

2.2.1 Standard Type CPU (FP2-C1)

Parts Terminology and Functions
(1) Status indicator LEDs (- page $2-9$)
display the operating condition and error statuses.
(2) Initialize/test switch (- page $2-9$)
is used to clear the errors, initializes the operation memory and set the test operation.
(3) Mode selector (page 2-10) is used to change the operation mode of the PLC.
(4) COM port (RS232C) (m page 2 - 11)
is used to connect a computer or general-serial devices.
(5) Tool port (RS232C) is used to connect a programming tool.
(6) Operation condition switches (page $2-10$) are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.
(7) Memory backup battery
for backup of the internal memory (RAM).
Part number: AFC8801 (CR2450 or equivalent)

The settings of the operation condition switches become active when the power is turned on.

Status Indicator LEDs

These LEDs display the current mode of operatin or the occurrence of error.

LED	Description
RUN (green)	This lights in the RUN mode, to indicate that the program is being executed. It flashes during forced input/output.
PROG. (green)	This lights in the PROG. mode. Operation stops while this LED is lighted. It flashes when waiting for connection of slave station on remote I/O system. If the memory is initialized, the brightness dims, indicating that initialization is being executed.
TEST (green)	This lights in the test operation mode.
BREAK (green)	This lights in the operation halts at a break during a test run or halts during the step operation mode for the test run.
ERROR (red)	This lights if an error is detected during the self-diagnostic function.
BATT. (red)	This lights when the voltage of the backup battery drops below a specific value.
ALARM (red)	This lights if a hardware error occurs, or if operation slows because of the program, and the watchdog timer is activated.

Initialize/Test Switch

This switch clears errors, initializes the operation memory and sets the test operation mode.

Switch position	Operation mode
INITIALIZE (upward)	In the PROG. mode: The contents of the operation memory are initialized. However, the system register (including the I/O map) and the program are not initialized. If the error of self-diag- nostic error code 42 or lower is occured, the special internal relays R9000 to R9008 and the special data register DT90000 are not cleared. In the RUN mode: Operation errors, remote I/O system errors, and battery errors are cleared.
(center)	The switch should normally be left in this position.
TEST (downward)	Setting this switch to the downward position in the PROG. mode, accesses the test mode. Switching to the RUN mode in this state, initiates test operation. To return from the test mode to the normal operation, return this switch to the center position in the PROG. mode.

Note
By turning on the initialize/test switch while in the PROG.mode, you can be specify the type of operation memory to be cleared with system register 4.

2.2 FP2 CPU

Mode Selector

Use the mode selector to start and stop the operation. For test operations, set the initialize/test switch to TEST position.

Selector position	Operation mode
RUN (upward)	This sets the RUN mode. The program is executed, and operation begins.
REMOTE (center)	This enables operation to be started and stopped from a programming tool. At the stage where the selector is changed, when switching from the PROG. to the RE- MOTE mode, the system remains in the PROG. mode and when switching from the RUN to the REMOTE mode, it remains in the RUN mode.
PROG. (downward)	This sets the PROG. mode. In this mode, programming can be done using tools, the test operation mode can be accessed and the operation memory can be initialized using the Initialize/tset switch.

Operation Condition Switches

Switch	Item	Switch position	
		off (factory setting)	on
SW1	Baud rate for tool port	System register setting (Default value: $19,200 \mathrm{bps})$	$9,600 \mathrm{bps}$
SW2	Program memory selection	Internal RAM	Optional memory (ROM)
SW3	Program memory protection	Write enabled	Write protected
SW4	Not used	-	-

COM Port (RS232C)

Pin alignment

| Pin
 number | Signal name | Signal direction | |
| :--- | :--- | :--- | :--- | :--- |
| | | PLC | Destination
 (Field device) |
| 1 | Frame ground | FG | |
| 2 | Send data | SD | \rightarrow |
| 3 | Received data | RD | \leftarrow |
| 4 | Request to send (always on) | RS | \rightarrow |
| 5 | Clear to send | CS | \leftarrow |
| 6 | Not used | - | |
| 7 | Signal ground terminal | SG | |
| 8 | Not used | - | |
| 9 | Equipment ready (always on) | ER | |

Note

The serial data communication control instruction (F144) cannot be executed unless pin 5 is turned on.

Communications specifications

Electrical characteristics conform to EIA RS232C.
The baud rate and transmission format are decided by system registers.
The table below shows the settings in the default state.

Item	Description
Mode selection Computer link Baud rate	19200 bps
Data bit length	8 bits
Parity check	Odd parity
Start bit length	1 bit
Stop bit length	1 bit

The starting and ending codes when using a computer link are determined by the MEW-TOCOL-COM.
When using the general-purpose communication function (serial data communication control instruction "F144"), the setting of system register 412 should be changed.
The serial data communication control instruction can be used to switch between the computer link function and the general-purpose communication function.
If the transmission speed is $38,400 \mathrm{bps}$ or higher, the transmission distance over which communication is possible is limited to within $3 \mathrm{~m} / 9.84 \mathrm{ft}$.

2.2 FP2 CPU

2.2.2 CPU with 64 Points Input (FP2-C1D)

Parts Terminology and Functions
(1) Status indicator LEDs (- page $2-9$)
display the operating condition and error statuses.
(2) Initialize/test switch (1 page $2-9$)
is used to clear the errors, initializes the operation memory and set the test operation.
(3) Mode selector (o page 2-10)
is used to change the operation mode of the PLC.
(4) COM port (RS232C) (page $2-11$)
is used to connect a computer or general-serial devices.
(5) Tool port (RS232C)
is used to connect a programming tool.
(6) Input indicators ($\mathbf{3 2}$ points)

Indicate the input on/off states.
(7) Selector for input indicators
switch between the first 32 points and second 32 points of the 64 points input LED display.
(8) Input connectors

CN1: X0 to X1F
CN2: X20 to X3F
(9) Operation condition switches (- page $2-10$)
are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.

- next page
(10) Memory backup battery
for backup of the internal memory (RAM).
Part number: AFC8801 (CR2450 or equivalent)

The settings of the operation condition switches become active when the power is turned on.

CPU with 64 Points Input Specifications

Item	Description
Number of input point	64 points
Insulation method	Optical coupler
Rated input voltage	24 V DC
Rated input current	Approx. 4.3 mA (at $24 \mathrm{~V} \mathrm{DC)}$
Input impedance	Approx. $5.6 \mathrm{k} \Omega$
Input voltage range	20.4 to 26.4 V DC
Min. on voltage/Min. on current	$19.2 \mathrm{~V} / 4 \mathrm{~mA}$
Max. off voltage/Max. off current	$5.0 \mathrm{~V} / 1.5 \mathrm{~mA}$
Response time	off \rightarrow on
	on \rightarrow off
Input points per common	0.2 ms or less
	32 points per common (Either the positive or negative of the input power supply can be connected to common terminal.)
Operating indicator	$32-$ dot LED display (lit when on, switching)
External connection method	Two 40-pin connectors

Note
Keep the number of input points which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

2.2 FP2 CPU

Internal Circuit Diagram

Pin Layout

The COM pins of each connector are connected internally.

2.3 Expansion Memory Unit and ROM (for FP2 CPU)

Expansion Memory Unit

Parts Terminology

(1) Mounting knob
(2) Connector (rear side)
(3) ROM IC socket (for FP2-EM3, FP2-EM6 and FP2-EM7)

Install the optional memory FROM or EPROM.
Type of Expansion Memory Unit

Item	Part number				Description	
	FP2-EM1	FP2-EM2	FP2-EM3	FP2-EM6	FP2-EM7	
Comment input function (flash ROM)	Available	Available	Available	Not available	Not available	Writes the I/O comments, re- marks and block comments in the program to the FP2 CPU.
Calendar/ timer func- tion	Available	Available	Available	Not available	Not available	Allows operations using the cal- endar/timer function.
Expansion RAM	Not available	Available	Available	Available	Not available	Increases the program memory from approx. 16K to approx. 32K. Also enables use of the trace function.
ROM IC socket	Not available	Not available	Available	Available	Available	Enables the program to be co- pied to ROM for ROM opera- tion.

Type of ROM

Type	Description	Part number
FROM	Equivalent to the 29EE010-120-4C-PH (SILICON STORAGE TECHNOLOGY, INC.). Enables writing with the operation of the programming tools when attached to the CPU.	FP2-EM4
EPROM	Equivalent to the M27C1001-12F1 (SGS-THOMSON MICROELECTRONICS). A commercially available ROM writer is required for writing.	FP2-EM5

2.3 Expansion Memory Unit and ROM (for FP2 CPU)

Installation Procedure

Installing the expansion memory unit

Procedure:

1. Send the program and data to the personal computer using the programming tool software (NPST-GR or FPWIN GR).
2. Save the program and data to the disk.
3. Set the mode selector of the FP2 CPU to PROG.
4. Turn off the power supply and remove the FP2 CPU.
5. Remove the retaining screw.

6. Install the expansion memory unit.
7. Secure the expansion memory unit with the retaining screw.

8. Install the FP2 CPU to the backplane and turn on the power supply.
9. Perform a program clear using the programming tool software.
10. Send to the FP2 CPU the program and data saved in step 2 above. (For the FP2-EM2, FP2-EM3 and FP2-EM6, continue with the procedures below.)
11. At the "NPST Configuration" menu for NPST-GR or "Select PLC Type" menu for FPWIN GR of programming tool software, set the PLC type to FP2(32K).
12. Set the program capacity with system register 0 .

Installing the ROM

Procedure:

1. Release the lock for the ROM IC socket.
2. Make sure that the lead pitch of the ROM matches that of the socket.
3. Making sure that the orientation is correct, insert the ROM into the socket.
4. Return the lock to the locked position completely after the ROM is inserted.

When removing or installing the expansion memory unit, the contents of the internal RAM may be erased. Therefore, always save the program onto a disk before beginning the removal and installation operations. During the installation or removal operations, do not touch the leads on any of the IC with your hands.

2.4 FP2SH CPU

2.4 FP2SH CPU

Standard type CPU

Small PC card compliant type CPU

Type of FP2SH CPU

Type	Operation speed	Internal RAM	Optional memory			Function		Part number	Model number
			Expansion RAM	ROM	IC card	Calendar/ timer	Comment memory		
32k steps Standard type CPU	From 0.03 $\mu \mathrm{s}$	32k steps	Not available	Available (Optional)	Not available	Available (Built-in)	Available (Built-in)	FP2-C2L	AFP2221
60k steps Standard type CPU		60k steps	Not available	Available (Optional)	Not available	Available (Built-in)	Available (Built-in)	FP2-C2	AFP2231
60k steps CPU with IC memory card interface		60k steps	Not available	Available (Built-in)	Available (Optional)	Available (Built-in)	Available (Built-in)	FP2-C2P	AFP2235
120k steps CPU with IC memory card interface		$\begin{aligned} & \text { 120k } \\ & \text { steps } \end{aligned}$	Not available	Available (Built-in)	Available (Optional)	Available (Built-in)	Available (Built-in)	FP2-C3P	AFP2255

2.4.1 32k/60k Step Standard Type CPU (FP2-C2L/FP2-C2)

Parts Terminology and Functions

(1) Status indicator LEDs (- page $2-9$)
display the operating condition and error statuses.
(2) Initialize/test switch (- page $2-9$)

Setting the switch to the "INITIAL" side clears errors and initializes the operation memory. Setting the switch to the "TEST" side puts the PLC in the test operation mode.
(3) Mode selector (ω page $2-10$)
is used to change the operation mode of the PLC.
This is used to switch between the RUN, REMOTE, and PROG. modes.
(4) COM port (RS232C) (- page 2 -11)
is used to connect a computer or general-serial devices.
(5) Tool port (RS232C)
is used to connect a programming tool.
(6) Operation condition switches (ω page $2-21$) are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.
(7) Memory backup battery
for backup of the internal memory (RAM).
Part number: AFC8801 (CR2450 or equivalent)

2.4 FP2SH CPU

2.4.2 CPU with IC Memory Card Interface (FP2-C2P/FP2-C3P)

Parts Terminology and Functions
(1) Status indicator LEDs (- page $2-9$) display the operating condition and error statuses.
(2) IC memory card access LED

Illuminates when data is being read from or written to the IC memory card.
(3) IC memory card slot is used when installing an optional IC memory card.
(4) IC memory card eject button

Pressing this button ejects the IC memory card.
(5) Initialize/test switch (- page $2-9$)

Setting the switch to the "INITIAL" side clears errors and initializes the operation memory. Setting the switch to the "TEST" side puts the PLC in the test operation mode.
(6) Mode selector (- page 2 - 10)
is used to change the operation mode of the PLC.
This is used to switch between the RUN, REMOTE, and PROG. modes.
(7) IC memory card access enable switch

Setting this switch to the "on" (upward) side enables data to be read and written to the IC memory card.
(8) COM port (RS232C) (- page 2 -11)
is used to connect a computer or general-serial devices .
(9) Tool port (RS232C)
is used to connect a programming tool.

* next page

(10) Operation condition switches

are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.
(11) Memory backup battery
for backup of the internal memory (RAM).
Part number: AFC8801 (CR2450 or equivalent)

Operation Condition Switches

Switch	Item	Switch position	
		off (factory setting)	on
SW1	Baud rate for tool port	System register setting (Default value: $19,200 \mathrm{bps})$	$9,600 \mathrm{bps}$
SW2	Program memory selection	Internal RAM	External memory
SW3	Program memory protection	Write enabled	Write protected
SW4	External memory selection	ROM	IC memory card

2.4 FP2SH CPU

2.5 Expansion Memory Unit and ROM (for FP2-C2L/FP2-C2)

Parts Terminology

AFP2207(FP2-EM7)

AFP2208

(1) Mounting knob
(2) Connector (rear side)
(3) ROM IC socket

Install the optional memory FROM or EPROM.

Type of Expansion Memory Unit

Type	Function	Part number	Model number
Expansion memory unit	Socket for installing the ROM in the CPU	FP2-EM7	AFP2207
	Nonvolatile memory-implemented memory unit	-	AFP2208

Note

The FP2-EM1, FP2-EM2, FP2-EM3, and FP2-EM6 expansion memory units for the FP2 cannot be used.
As for the memory unit AFP2208, the ROM is not removable.

Type of ROM

Type	Function	Part number
FROM	Equivalent to the 29EE020-150-4C-PH (SILICON STORAGE TECHNOLOGY, INC.). Enables writing with the operation of the programming tools when attached to the CPU.	AFP5208
EPROM	Equivalent to the M27C2001-150F1 (SGS-THOMSON MICROELECTRONICS). A commercially available ROM writer is required for writing.	AFP5209

Installation Procedure

For detailed information about the installation of expansion memory unit page 2 - 16
For detailed information about the installation of ROM page 2-17

2.6 IC Memory Card (for FP2-C2P/FP2-C3P)

AIC50020, AIC52000

SmaISRAM

AFP2209

Parts and Functions

(1) Write protect switch

Switch position		Purpose	
\square	\square	ON (right)	Read-only of the data
\square	OFF (left)	Write enable of the data	

Lock switch

It fixes the battery holder.

Switch position		Purpose
\square 侺 \longrightarrow	LOCK (right)	Lock position
W断	RELEASE (left)	Release position

Note) The lock switch is automatically back to the LOCK position from the RELEASE position when removing the battery holder.
(3) Battery holder

A battery for memory backup is installed. (A battery is supplied with the product.) Product number for purchasing separately: AFP2806

Role of IC Memory Card

The IC memory card can be used as a memory to which programs can be saved and copied, or as an expanded memory to which data can be read and written in the program.
The IC memory card can be divided into two areas, a "format field" in which various programs are stored, and an "expanded memory field" used as a data memory.

2.6 IC Memory Card (for FP2-C2P/FP2-C3P)

Example:
A 2MB card can be formatted as 1 MB , with 1 MB being used as a "format field" and the remaining 1 MB being used as an "expanded memory field".
The entire field can be used as a "format field" or as an "expanded memory field", and the card used exclusively as a memory card for saving programs or data memory.

If the FROM section is specified as the "expanded memory field", the card can be used only for reading data.

Types of IC Memory Cards

| Type | Memory
 capacity | Part
 number | Usage method | Recommended
 application
 points |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FROM
 type | 2 MB | When used to store
 programs | When used as
 expanded memory field | |

Notes

- Both the SRAM and FROM type can be divided into a "format field" and an "expanded memory field" for use.
- When using the card as a program memory, there are four ways to read programs:
- Programs are read automatically when the power is turned on (IC memory card operation).
- Programs are read using the "ROM \rightarrow RAM" operation of programming tool software.
- Programs are read using the "IC Card Service" of programming tool software.
- Programs are read using the F14 (PGRD) instruction of the sequence program.

Inserting and Removing the IC Memory Card

The IC memory card can be inserted or removed even when the FP2SH power is on. To insert or remove the card when the power is on, be sure to follow the following procedure.

Inserting procedure:

1. Remove the cover of FP2SH CPU.

2. Set the IC memory card access enable switch to off position.

3. Insert the IC memory card.

When using AFP2209, confirm if the battery is installed in the IC memory card.
2.6 IC Memory Card (for FP2-C2P/FP2-C3P)
4. Set the IC memory card access enable switch to on position.

Removal procedure:

1. Verify that the IC memory card access LED is off. Set the IC memory card access enable switch to off position.

2. Push the eject button and pull out the IC memory card.

Precautions when installing/removing the IC memory card

Do not try to insert and remove the IC memory card while the IC memory card access enable switch is on. It could lead to damage of the memory contents or a malfunction of CPU.

Do not use excessive force to the card or the section where card is installed.

Battery of the SRAM type IC memory card

AIC52000
A rechargeable battery is used. It cannot be exchanged.
AFP2209
An interchangeable battery is used. When you use for the first time, install the battery included.

If the battery voltage has dropped, the ERROR LED lights, and error code K55 or K54 is stored in special data register DT90000.
Error codes can be confirmed using programming tools.
K54 -- The data on the IC memory card is not retained.
K55 -- The data on the IC memory card is guaranteed, but the voltage of the internal battery has dropped.
*AIC52000: Power should continue to be supplied to the unit in order to charge it.
*AFP2209: The replacement of memory backup battery is neces sary. As the data saved in AFP2209 is overwritten when replacing the battery, the data must be backed up before the replacement.

Write protection of IC memory card

There is a write protect switch on the IC memory card. To prohibit writing to the IC memory card, set this switch to "Write protect" position.
To write the program or data to the IC memory card, set the write protect switch to off position.

2.7 Power Supply Units

2.7 Power Supply Units

2.7.1 Power Supply Specifications

Parts Terminology and Functions
(1) POWER LED

Turns on when power is applied.
(2) Power supply terminal
is the terminal for power supply wiring. Uses M3 crimping (pressure connection) terminals (ω section 4.2.1).
(3) Ground terminal

To minimize effects from noise and prevent electrical shocks, connect this terminal to ground.
(4) Alarm output terminal

Contact output terminals of the relay which turns on when the ALARM LED of the CPU turns on. Normally closed contact (N.C.) and normally open contact (N.O.) are available.
(5) Unit installation screw
(6) Temporary holding hook

Specifications

Item		Description			
Part number		FP2-PSA1	FP2-PSA2	FP2-PSA3	FP2-PSD2
Size of unit		1-module		2-module	
Input	Rated voltage	100 to 120V AC	200 to 240 V AC	100 to 240V AC	24V DC
	Current consumption	0.4 A or less (at 100V AC)	0.2A or less (at 200V AC)	0.7A or less (at 100 V AC) 0.4 A or less (at 200V AC)	2.5 A or less
	Surge current	40A or less		30A or less (at $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$)	10A or less
	Rated frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			-
	Operating voltage range	85 to 132V AC	170 to 264 V AC	85 to 264 V AC	$\begin{array}{\|l} \hline 20.4 \text { to } 31.2 \mathrm{~V} \text { DC } \\ (* 1) \end{array}$
Output	Output capacity at 5V	Max. 2.5A		Max. 5A	Max. 5A
Alarm contact capacity		30V DC 1A			
Alarm contact operation		When the ALARM LED of CPU is lit			
Alarm contact type		1c contact			
Leakage current		Between input and ground terminals, 0.75 mA or less			
Breakdown voltage		1500 V AC for 1 minutes (between input and ground terminals)			500V AC for 1 minutes (between input and ground terminals)
Insulation resistance		100M 500 V DC (between input and ground terminals)			
Guaranteed lifetime		20000 hours at $55^{\circ} \mathrm{C} / 131{ }^{\circ} \mathrm{F}$			
Overcurrent protection function		Built-in overcurrent protection			
Fuse		Built-in			
Terminal screw		M3			

${ }^{*} 1$ The allowable variation in voltage after startup is 15.6 V to 31.2 V .

2.8 Input and Output Units

2.8.1 Common Specifications of Input and Output Units

Parts Terminology and Functions

(1) Input and output indicators

Indicate the input and output on/off states.
(2) Terminal block release lever

By lowering this lever, the terminal block can be removed from the unit without removing any of the wiring. After installation, push in the lock button at the bottom of the unit to lock in the terminal block.

(3) Terminal block

This is the terminal block for the inputs, outputs, and power supplies. This terminal block uses M3 sized crimping (pressure connection) terminals. For more information regarding the crimping (pressure connection) terminals, refer to section 4.5.1.
(4) Unit installation screw

Secures the unit to the backplane.
(5) Connector

This is the connector for input/output and power supply wiring. This allows the connector of discrete-wire and the connector of flat cable. For more information regarding the suitable connectors, refer to section 4.4.1.
For terminal connection, an exclusive cable is available. For more information, refer to section 4.4.3.
(6) Indicator selection switch

Switches between the first 32 points (CN1 position) and second 32 points (CN2 position) of the LED display for the 64-point type unit.

Table of Input Unit Types

Type	Number of points	Connection method	Description	Part number
DC input type	16 points	Terminal block	12 to 24 V DC, sink/source input	FP2-X16D2
	32 points	Connector	24 V DC, sink/source input	FP2-X32D2
	64 points	Connector	24 V DC, sink/source input	FP2-X64D2

Table of Output Unit Types

Type	Number of points	Connection method	Description	Part number
Relay output type	6 points	Terminal block	5 A, Without relay sockets	FP2-Y6R
	16 points	Terminal block	2 A, Without relay sockets	FP2-Y16R
Transistor (NPN open collector) output type	16 points	Terminal block	5 to 24V DC, 0.5A	FP2-Y16T
	32 points	Connector	5 to 24V DC, 0.1A	FP2-Y32T
Transistor (PNP open collector) output type	16 points	Connector	5 to 24V DC, 0.1A	FP2-Y64T
	32 points	Terminal block	5 to 24V DC, 0.5A	FP2-Y16P
	64 points	Connector	5 to 24V DC, 0.1A	FP2-Y32P

The maximum load current for the transistor output type output unit will differ depending on the operating voltage. Refer to the specifications pages for each unit.

2.8 Input and Output Units

Table of I/O Mixed Unit Types

Type	Number of points	Connection method	Description	Part number
DC input/transistor (NPN open collector) output type	32 input points/ 32 output points	Connector	$24 \mathrm{~V} \mathrm{DC}, \mathrm{sink/source} \mathrm{input}$,	FP2-XY64D2T
DC input/transistor (PNP open collector) output type	32 input points/ 32 output points	Connector	24 V DC, sink/source input,	FP2-XY64D2P
DC input with on pulse catch input function/transis- tor (NPN open collector) output type	32 input points/ 32 output points	Connector	24 V DC, sink/source input,	FP2-XY64D7T
DC input with on pulse catch input function/transis- tor (PNP open collector) output type	32 input points/ 32 output points	Connector	24 V DC, sink/source input,	FP2-XY64D7P

Notes

- The maximum load current value will differ depending on the operating voltage. Refer to the specifications page for each unit.
- For types with the on pulse catch input, the four points X1C through X1F of the 32 input points possess the on pulse catch input function. (m section 2.11.5)

2.9 Input Units Specifications

2.9.1 16-point Type DC Input Unit

Specifications

Item	Description		
Part number	FP2-X16D2		
Insulation method	Optical coupler		
Rated input voltage	12 to 24 V DC		
Rated input current	Approx. 8mA (at 24V DC)		
Input impedance	Approx. 3k Ω		
Input voltage range	10.2 to 26.4 V DC (Max. input current: 10 mA or less)		
Min. on voltage/Min. on current	$9.6 \mathrm{~V} / 4 \mathrm{~mA}$		
Max. off voltage/Max. off current	$2.5 \mathrm{~V} / 1 \mathrm{~mA}$		
Response time	off \rightarrow on		
	on \rightarrow off		
Internal current consumption (at 5 V DC)	0.2 ms or less		
Common method (Input points per common)	0.2 ms or less		
80 mA or less Opoints/common Either the positive or negative of the input power supply can be connected to common terminal.			
External connection method	16 -dot LED display (lit when on)		
Weight	Terminal block (M 3 screw)		

Internal Circuit Diagram

2.9 Input Units Specifications

Pin Layout

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.9.2 32-point Type DC Input Unit

Specifications

Item	Description
Part number	FP2-X32D2
Insulation method	Optical coupler
Rated input voltage	24V DC
Rated input current	Approx. 4.3mA (at 24V DC)
Input impedance	Approx. $5.6 \mathrm{k} \Omega$
Input voltage range	20.4 to 26.4V DC
Min. on voltage/Min. on current	$19.2 \mathrm{~V} / 4 \mathrm{~mA}$
Max. off voltage/Max. off current	5.0V/1.5mA
Response time off \rightarrow on	0.2 ms or less
on \rightarrow off	0.3 ms or less
Internal current consumption (at 5V DC)	80 mA or less
Common method (Input points per common)	32 points/common Either the positive or negative of the input power supply can be connected to common terminal.
Operating indicator	32-dot LED display (lit when on)
External connection method	Connectors (MIL type 40-pin)
Weight	Approx. 100g

Internal Circuit Diagram

2.9 Input Units Specifications

Pin Layout

2.9.3 64-point Type DC Input Unit

Specifications

Item	Description
Part number	FP2-X64D2
Insulation method	Optical coupler
Rated input voltage	24 V DC
Rated input current	Approx. 4.3mA (at 24V DC)
Input impedance	Approx. $5.6 \mathrm{k} \Omega$
Input voltage range	20.4 to 26.4 V DC
Min. on voltage/Min. on current	$19.2 \mathrm{~V} / 4 \mathrm{~mA}$
Max. off voltage/Max. off current	$5.0 \mathrm{~V} / 1.5 \mathrm{~mA}$
Response time	0.2 ms or less
	on \rightarrow on
off	0.3 ms or less
Internal current consumption (at 5V DC)	100 mA or less
Common method (Input points per common)	32 points/common Either the positive or negative of the input power supply can be connected to common terminal.
Operating indicator	32 -dot LED display (lit when on, switching)
External connection method	Connectors (MIL type two 40-pin)
Weight	Approx. 120g

Note

Keep the number of input points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

2.9 Input Units Specifications

Internal Circuit Diagram

Pin Layout

The COM pins of each connector are connected internally.
For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

2.10 Output Units Specifications

2.10.1 16-point Type Relay Output Unit

Specifications

Item		Description
Part number		FP2-Y16R
Insulation method		Optical coupler
Rated control capacity		2A 250V AC (5A/common), 2A 30V DC (5A/common) Min. load: $100 \mu \mathrm{~A}, 100 \mathrm{mV}$ (resistor load)
Response time	off \rightarrow on	10 ms or less
	on \rightarrow off	8 ms or less
Life time	Mechanical	20,000,000 operations or more
	Electrical	100, 000 operations or more
Internal current consumption (at 5V DC)		120 mA or less
Power supply for driving internal circuit	Voltage	24V DC $\pm 10 \%$ (21.6 to 26.4V DC)
	Current	160 mA or less
Surge absorber		None
Relay socket		None
Common method (Output points per common)		8 points/common
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 190g

Internal Circuit Diagram

2.10 Output Units Specifications

Pin Layout

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.10.2 6-point Type Relay Output Unit

Specifications

Item		Description
Part number		FP2-Y6R
Insulation method		Optical coupler
Rated control capacity		5A 250V AC (10A/common), 5A 30V DC (10A/common)(* Note) Min. load: 100mA, 10V (resistor load)
Response time	off \rightarrow on	10 ms or less
	on \rightarrow off	8 ms or less
Life time	Mechanical	20,000,000 operations or more
	Electrical	100, 000 operations or more
Internal current consumption (at 5V DC)		50 mA or less
Power supply for driving internal circuit	Voltage	24 V DC $\pm 10 \%$ (21.6 to 26.4V DC)
	Current	70 mA or less
Surge absorber		None
Relay socket		None
Common method (Output points per common)		2 points/common
Operating indicator		6-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 170g

Note
For each common 1 pin, use at a current capacity of 5A or less.

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.10.3 16-point Type Transistor (NPN) Output Unit

Specifications

Item		Description
Part number		FP2-Y16T
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.5A (at 12 to 24 V DC), 0.1A (at 5V DC) (* Note)
Maximum surge current		3A, 10ms or less
Off state leakage current		$1 \mu \mathrm{~A}$ or less
On state maximum voltage drop		0.5 V or less
Response time	off \rightarrow on	0.1 ms or less
	on \rightarrow off	0.3 ms or less
Internal current consumption (at 5V DC)		100 mA or less
Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC (* Note)
	Current	120 mA or less (at 24 V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		8 points/common
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 150g

Note

The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.10.4 16-point Type Transistor (PNP) Output Unit

Specifications

Item		Description
Part number		FP2-Y16P
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.5A (at 12 to 24V DC), 0.1 A (at 5V DC) (* Note)
Maximum surge current		$3 \mathrm{~A}, 10 \mathrm{~ms}$ or less
Off state leakage current		$1 \mu \mathrm{~A}$ or less
On state maximum voltage drop		0.5 V or less
Response time	off \rightarrow on	0.1 ms or less
	on \rightarrow off	0.3 ms or less
Internal current consumption (at 5V DC)		80 mA or less
Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC (* Note)
	Current	70 mA or less (at 24 V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		8 points/common
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 150g

Note

The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

Output YO to YF

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.10.5 32-point Type Transistor (NPN) Output Unit

Specifications

Item		Description
Part number		FP2-Y32T
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.1 A (at 12 to 26.4 V DC) , 50 mA (at 5V DC) (* Note)
Maximum surge current		0.3A
off state leakage current		$1 \mu \mathrm{~A}$ or less
on state maximum voltage drop		1 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
Response time	off \rightarrow on	0.1 ms or less
	on \rightarrow off	0.3 ms or less
Internal current consumption (at 5V DC)		130 mA or less
Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC
	Current	140 mA or less (at 24 V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		32 points/common
Operating indicator		32-dot LED display (lit when on)
External connection method		Connector (MIL type 40-pin)
Weight		Approx. 100g

Note

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.

Power supply for driving internal circuit (V)

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.

For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

2.10.6 32-point Type Transistor (PNP) Output Unit

Specifications

Item		Description
Part number		FP2-Y32P
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.1 A (at 12 to 26.4 V DC), 50 mA (at 5V DC) (* Note)
Maximum surge current		0.3A
off state leakage current		$1 \mu \mathrm{~A}$ or less
on state maximum voltag	drop	1.5 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
Response time	off \rightarrow on	0.1 ms or less
	on \rightarrow off	0.3 ms or less
Internal current consump (at 5V DC)		130 mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC
internal circuit	Current	150 mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output common)	points per	32 points/common
Operating indicator		32-dot LED display (lit when on)
External connection meth		Connectors (MIL type 40-pin)
Weight		Approx. 100g

Note

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.

Power supply for driving internal circuit (V)

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.
For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

2.10.7 64-point Type Transistor (NPN) Output Unit

Specifications

Item		Description
Part number		FP2-Y64T
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4 V DC
Maximum load current		0.1 A (at 12 to 24 V DC) , 50mA (at 5V DC) (* Note)
Maximum surge current		0.3A
Off state leakage current		$1 \mu \mathrm{~A}$ or less
On state maximum voltage drop		1 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
Response time	off \rightarrow on	0.1 ms or less
	on \rightarrow off	0.3 ms or less
Internal current consumption (at 5V DC)		210 mA or less
Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC
	Current	250 mA or less (at 24 V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		32 points/common
Operating indicator		32-dot LED display (lit when on, switching)
External connection method		Connector (MIL type two 40-pin)
Weight		Approx. 120g

Note

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.

Power supply for driving internal circuit (V)

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

Output Y0 to Y1F Pin layout of first 32 points Left side connector (CN1)

Output Y20 to Y3F
Pin layout of last 32 points
Right side connector (CN2)

Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.
For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

2.10.8 64-point Type Transistor (PNP) Output Unit

Specifications

Item		Description
Part number		FP2-Y64P
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.1 A (at 12 to 24V DC), 50mA (at 5V DC) (* Note)
Maximum surge current		0.3A
Off state leakage current		$1 \mu \mathrm{~A}$ or less
On state maximum voltag	drop	1.5 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
Response time	off \rightarrow on	0.1 ms or less
	on \rightarrow off	0.3 ms or less
Internal current consump (at 5V DC)		210 mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC
internal circuit	Current	270 mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output common)	points per	32 points/common
Operating indicator		32-dot LED display (lit when on, switching)
External connection meth		Connectors (MIL type two 40-pin)
Weight		Approx. 120g

Note

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.

Power supply for driving internal circuit (V)

Number of
points per
common which
are simulta-
neous on

2.10 Output Units Specifications

Internal Circuit Diagram

Pin Layout

Output Y0 to Y1F
Pin layout of first 32 points Left side connector (CN1)

Output Y20 to Y3F
Pin layout of last 32 points
Right side connector (CN2)

Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.

For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

2.11 I/O Mixed Units Specifications

2.11.1 32-point Type DC Input/32-point Type Transistor (NPN) Output Unit

Specifications

Item			Description
Part number			FP2-XY64D2T
Input specifica-	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input curre		Approx. 4.3 mA (at 24 V DC)
	Input impedance		Approx. $5.6 \mathrm{k} \Omega$
	Input voltage rang		20.4 to 26.4V DC
	Min. on voltage/M	. on current	$19.2 \mathrm{~V} / 4 \mathrm{~mA}$
	Max. off voltage/M	x. off current	5.0V/1.5mA
	Response time	off \rightarrow on	0.2 ms or less
		on \rightarrow off	0.3 ms or less
	Common method per common)	nput points	32 points/common Either the positive or negative of the input power supply can be connected to common terminal.
Output specifica-	Insulation method		Optical coupler
	Rated load voltag		5 to 24V DC
	Load voltage rang		4.75 to 26.4V DC
	Maximum load cu		0.1 A (at 12 to 24 V DC), 50 mA (at 5V DC) (* Note)
	Maximum surge	rent	0.3A
	Off state leakage	rrent	$1 \mu \mathrm{~A}$ or less
	On state maximum	voltage drop	1 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
	Response time	off \rightarrow on	0.1 ms or less
		on \rightarrow off	0.3 ms or less
	Power supply for	Voltage	4.75 to 26.4 V DC
	driving internal circuit	Current	120 mA or less (at 24 V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method per common)	Output points	32 points/common
Common specifications	Internal current 5V DC)	sumption (at	150 mA or less
	Operating indicat		32-dot LED display (lit when on, switching)
	External connect	method	Connector (two 40-pin)
	Weight		Approx. 120g

2.11 I/O Mixed Units Specifications

Notes

- Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

- The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

Power supply for driving
internal circuit (V)

Internal Circuit Diagram

Output

Pin Layout

The COM pins of each connector are connected internally.

Although " + " and "-" terminals are connected internally with the same connector. It is recommended that they also be connected externally.

2.11.2 32-point Type DC Input/32-point Type Transistor (PNP) Output Unit

Specifications

Item			Description
Part number			FP2-XY64D2P
Input specifications	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input current		Approx. 4.3mA (at 24V DC)
	Input impedance		Approx. 5.6k
	Input voltage range		20.4 to 26.4V DC
	Min. on voltage/ Min. on current		$19.2 \mathrm{~V} / 4 \mathrm{~mA}$
	Max. off voltage/ Max. off current		$5.0 \mathrm{~V} / 1.5 \mathrm{~mA}$
	Response time	off \rightarrow on	0.2 ms or less
		on \rightarrow off	0.3 ms or less
	Common method (Input points per common)		32 points/common Either the positive or negative of the input power supply can be connected to common terminal.
Output specifications	Insulation method		Optical coupler
	Rated load voltage		5 to 24V DC
	Load voltage range		4.75 to 26.4 V DC
	Maximum load current		0.1 A (at 12 to 24 V DC), 50 mA (at 5V DC) (* Note)
	Maximum surge current		0.3A
	Off state leakage current		1 A A or less
	On state maximum voltage drop		1.5 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
	Response time	off \rightarrow on	0.1 ms or less
		on \rightarrow off	0.3 ms or less
	Power supply for driving internal circuit	Voltage	4.75 to 26.4 V DC
		Current	130 mA or less (at 24V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method (Output points per common)		32 points/common
Common specifications	Internal current consumption (at 5V DC)		150 mA or less
	Operating indicator		32-dot LED display (lit when on, switching)
	External Connection method		Connector (two 40-pin)
	Weight		Approx. 120g

next page

- Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

- The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

2.11 I/O Mixed Units Specifications

Internal Circuit Diagram

Pin Layout

The COM pins of each connector are connected internally.

Although " + " and "-" terminals are connected internally with the same connector. It is recommended that they also be connected externally.

2.11.3 32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (NPN) Unit

Specifications

Item			Description
Part number			FP2-XY64D7T
Input specifications	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input current		Approx. 4.3mA (at 24V DC)
	Input impedance		Approx. $5.6 \mathrm{k} \Omega$
	Input voltage range		20.4 to 26.4V DC
	Min. on voltage/ Min. on current		19.2V/4mA
	Max. off voltage/ Max. off current		$5.0 \mathrm{~V} / 1.5 \mathrm{~mA}$
	Response time	off \rightarrow on	0.2 ms or less (for X0 to X1F)
		on \rightarrow off	0.3 ms or less (for X0 to X1B) 1.0 to 5.0 ms (X1C to X1F)
	Common method (Input points per common)		32 points/common Either the positive or negative of the input power supply can be connected to common terminal.
Output specifications	Insulation method		Optical coupler
	Rated load voltage		5 to 24V DC
	Load voltage range		4.75 to 26.4 V DC
	Maximum load current		0.1A (at 12 to 24 V DC), 50 mA (at 5V DC)(* Note)
	Maximum surge current		0.3A
	Off state leakage current		$1 \mu \mathrm{~A}$ or less
	On state maximum voltage drop		1 V or less (at 6 to 26.4 V DC), 0.5 V or less (at 6 V DC or less)
	Response time	off \rightarrow on	0.1 ms or less
		on \rightarrow off	0.3 ms or less
	Power supply for driving internal circuit	Voltage	4.75 to 26.4 V DC
		Current	120 mA or less (at 24 V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method (Output points per common)		32 points/common
Common specifications	Internal current consumption (at 5V DC)		150 mA or less
	Operating indicator		32-dot LED display (lit when on, switching)
	External connection method		Connector (two 40-pin)
	Weight		Approx. 120g

- With a periodical interrupt function (1 ms), it is possible to read an on pulse input signal with a minimum pulse width of 0.4 ms . For detailed information about the on pulse catch input function - section 2.11 .5
- Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

- The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

Internal Circuit Diagram

Output

Pin Layout

Input X0 to X1F

The COM pins of each connector are connected internally.

Although " + " and " - " terminals are connected internally with the same connector. It is recommended that they also be connected externally.

2.11.4 32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (PNP) Unit

Specifications

Item			Description
Part number			FP2-XY64D7P
Input specifications	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input current		Approx. 4.3 mA (at 24 V DC)
	Input impedance		Approx. $5.6 \mathrm{k} \Omega$
	Input voltage range		20.4 to 26.4V DC
	Min. on voltage/ Min. on current		$19.2 \mathrm{~V} / 4 \mathrm{~mA}$
	Max. off voltage/ Max. off current		$5.0 \mathrm{~V} / 1.5 \mathrm{~mA}$
	Response time	off \rightarrow on	0.2 ms or less (for X0 to X1F)
		on \rightarrow off	0.3 ms or less (for X0 to X1B) 1.0 to 5.0 ms (for X1C to X1F)
	Common method (Input points per common)		32 points/common Either the positive or negative of the input power supply can be connected to common terminal.
Output specifications	Insulation method		Optical coupler
	Rated load voltage		5 to 24V DC
	Load voltage range		4.75 to 26.4V DC
	Maximum load current		0.1 A (at 12 to 24 V DC), 50 mA (at 5V DC) (* Note)
	Maximum surge current		0.3A
	Off state leakage current		$1 \mu \mathrm{~A}$ or less
	On state maximum voltage drop		1.5 V or less (at 6 to 26.4 V DC) 0.5 V or less (at 6 V DC or less)
	Response time	off \rightarrow on	0.1 ms or less
		on \rightarrow off	0.3 ms or less
	Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC
		Current	130 mA or less (at 24V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method (Output points per common)		32 points/common
Common specifications	Internal current consumption (at 5V DC)		150 mA or less
	Operating indicator		32-dot LED display (lit when on, switching)
	External connection method		Connector (two 40-pin)
	Weight		Approx. 120g

next page

- With a periodical interrupt function (1ms), it is possible to read an on pulse input signal with a minimum pulse width of 0.4 ms . For detailed information about the on pulse catch input function w section 2.11.5
- Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

- The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

2.11 I/O Mixed Units Specifications

Internal Circuit Diagram

Pin Layout

Input X0 to X1F
Pin layout of first 32 points
Left side connector

The COM pins of each connector are connected internally.

Output Y20 to Y3F
Pin layout of last 32 points
Right side connector

Although " + " and " - " terminals are connected internally with the same connector. It is recommended that they also be connected externally.

2.11.5 On Pulse Catch Input Function

The I/O mixed unit (FP2-XY64D7T/FP2-XY64D7P) is equipped with "On pulse catch input" function. The on pulse catch input function has a delay circuit built into the input and is used in combination with a periodical interrupt function to make possible the reading of on pulses with extremely small widths.

Readable pulse signals

Minimum pulse width: 0.4 ms
Pulse interval: 6 ms or more

Method

In the program, specify the interval of periodical interrupt and the word number of I/O.

Considerations

The interval for the periodical interrupt is determined by the interrupt control instruction. Specify the pulse catch I/O (input) with the ICTL and F143 (IORF) instructions.

Program example

When an I/O mixed unit with on pulse catch input function is installed to slot " 0 " of the backplane.

2.11 I/O Mixed Units Specifications

Operation of pulse catch

1) Reception of external signal at the I / O mixed unit.

Within 0.2 ms of the leading edge of the external signal, the I / O mixed unit will go on. This on status will be held for 1 to 5 ms (the length of time the status is held will depend on the unit).
2) Reception of input at CPU that is executing a periodical interrupt.
The signal from the I / O mixed unit is read by the periodical interrupt.

Chapter 3

I/O Allocation

3.1 Fundamentals of I/O Allocation

3.1.1 I/O Allocation and Registering

I/O allocation is the process of assigning an I/O number to each unit. Registering refers to registering the I/O allocations in the system register of the CPU.

3.1.1.1 Types of I/O Allocation Methods

There are 3 types of allocation methods: I/O mount allocation, arbitrary allocation, and automatic allocation.

I/O mount allocation

Using the programming tool software (NPST-GR/FPWIN GR), the allocation condition of the mounted units is recorded, as is, to the system register of the CPU.

Arbitrary allocation

The programming tool software (NPST-GR/FPWIN GR) is used to create I/O allocations and register them in the system register of the CPU. In this case, no deviations in I/O numbers will occur if a unit mounting error was made.

Automatic allocation

If units are installed, allocation will take place when the power is turned on based on the states of the installed units.

Note

Automatic allocation only assigns I/O numbers to mounted units. It does not register the allocations.

3.1.1.2 Precautions Regarding Registering of I/O Allocation

If registering is not performed when using arbitrary allocation:

Automatic allocation will be performed, and allocation will be based on the state of the installed units.

If I/O registration has already been performed:

If the registered information is different from the actual state of installation, such as when a unit is changed to a different type or the installation position is changed, normal operation will not take place. In this case, perform registration once again.

3.1 Fundamentals of I/O Allocation

3.1.1.3 How to Count the I/O Numbers and Express the Occupied Points

How to count the I/O numbers (relay numbers)

Since I/O number are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

How to express the occupied points

In the programming tool and this manual, the occupied points are expressed in the following fashion for convenience.

	S	X
Occupied I/O points $16,32,64,128$		
Type of unit Nil: I/O unit S: Intelligent unit		
Type of I/O X: Input, Y: Output, E:	ut I/Os	

3.1.2 Table of Occupied I/O Points by Unit

Name		Part number	Occupied I/O point	Number of occupied slot
CPU	Standard type CPU	FP2-C1	-	1
	CPU with 64 points input	FP2-C1D	64X	2
	CPU with S-LINK	FP2-C1SL	(* Note 1)	2 (* Note 2)
FP2SH CPU	FP2-C2L	AFP2221	-	1
	FP2-C2	AFP2231	-	1
	FP2-C2P	AFP2235	-	1
	FP2-C3P	AFP2255	-	1
Remote I/O Slave Unit		FP2-RMS	-	1
Input unit	16-point type DC input	FP2-X16D2	16X	1
	32-point type DC input	FP2-X32D2	32X	1
	64-point type DC input	FP2-X64D2	64X	1
Output unit	16-point type relay output	FP2-Y16R	16Y	1
	6-point type relay output	FP2-Y6R	16Y	1
	16-point type transistor (NPN) output	FP2-Y16T	16Y	1
	16-point type transistor (PNP) output	FP2-Y16P	16Y	1
	32-point type transistor (NPN) output	FP2-Y32T	32Y	1
	32-point type transistor (PNP) output	FP2-Y32P	32Y	1
	64-point type transistor (NPN) output	FP2-Y64T	64Y	1
	64-point type transistor (PNP) output	FP2-Y64P	64Y	1
I/O mixed unit	32-point type DC input/32-point type transistor (NPN) output	$\begin{aligned} & \text { FP2-XY64D2T } \\ & \text { FP2-XY64D7T } \end{aligned}$	32X, 32Y	1
	32-point type DC input/32-point type transistor (PNP) output	$\begin{gathered} \hline \text { FP2-XY64D2P } \\ \text { FP2-XY64D7P } \\ \hline \end{gathered}$	32X, 32Y	1

3.1 Fundamentals of I/O Allocation

Name		Part number		Occupied I/O point	Number of occupied slot
Intelligent unit	Analog input unit	FP2-AD8VI, FP2-AD8X, FP2-RTD		128SX	1
	Analog output unit	FP2-DA4		64SY	1
	High-speed counter unit	FP2-HSCT		32SX, 32SY	1
		FP2-HSCP			
	Pulse I/O unit	FP2-PXYT		32SX, 32SY	1
		FP2-PXYP			
	Positioning unit (2-axis type)	FP2-PP2		32SX, 32SY	1
	Positioning unit (4-axis type)	FP2-PP4		64SX, 64SY	1
	Positioning unit (Multifunction type) 2-axis type	Transistor output type	FP2-PP21	32SX, 32SY	1
		Line driver output type	FP2-PP22		
	Positioning unit (Multifunction type) 4-axis type	Transistor output type	FP2-PP41	64SX, 64SY	1
		Line driver output type	FP2-PP42		
	Positioning unit RTEX (2-axis type)	FP2-PN2AN		128SX, 128SY	1
	Positioning unit RTEX (4-axis type)	FP2-PN4AN			
	Positioning unit RTEX (8-axis type)	FP2-PN8AN			
	Positioning Unit (Interpolation type) 2-axis type	Transistor output type	FP2-PP2T	32SX, 32SY	1
		Line driver output type	FP2-PP2L		
	Positioning Unit (Interpolation type) 4-axis type	Transistor output type	FP2-PP4T	64SX, 64SY	1
		Line driver output type	FP2-PP4L		
	Multi communication unit	FP2-MCU		16SX, 16SY	1
	Serial data unit	FP2-SDU		16SX, 16SY	1
	C.C.U.	FP2-CCU		$\begin{aligned} & \hline \text { 16SE (OSE) } \\ & \text { (* Note 3) } \end{aligned}$	1
	S-LINK unit	FP2-SL2		(* Note 1)	1
	Multi-wire link unit	FP2-MW		$\begin{aligned} & \text { 16SE (OSE) } \\ & \text { (* Note 3) } \end{aligned}$	1
	ET-LAN unit	FP2-ET1		$\begin{aligned} & \text { 32SX, 32SY } \\ & \text { (OSE) } \end{aligned}$	1
	MEWNET-VE Link unit	FP2-VE		$\begin{aligned} & \text { 32SX, 32SY } \\ & \text { (OSE) } \end{aligned}$	1
	FNS Unit	FP2-FNS		$\begin{aligned} & \text { 16SE (OSE) } \\ & (* \text { Note 3) } \end{aligned}$	1
	FMU Unit	PROFIBUS	FP2-DPV1-M	$\begin{aligned} & \hline \text { 16SE (OSE) } \\ & (* \text { Note 3) } \end{aligned}$	1
		Device Net	FP2-DEV-M		
		CAN open	FP2-CAN-M		

Notes

1) The "occupied I/O point" of S-LINK unit and CPU with S-LINK, will vary depending on the unit settings. For details, refer to "FP2 S-LINK Manual".
2) When using a CPU with S-LINK, the functionality of the slots are increased, and slot numbers can be allocated as if two SLINK units were installed. For more details, refer to "FP2 S-LINK Manual".
3) The occupied point can be set to " 0 " with arbitrary allocation.
4) When the handshake by I / O is not used, the number of occupied points can be set to " 0 " by allocating arbitrarily.

3.2 Arbitrary Allocation

3.2.1 Using Arbitrary Allocation

In the case of arbitrary allocation, I / O allocations are decided at the time of system design, and the allocations are registered in the PLC using a programming tool such as NPST-GR/FPWIN GR software.

At this time, registration can be performed even if the $/ / O$ units are not yet installed on the backplane according to the allocations. However, before operation the I/O units must be installed and set as required by the system design.

3.2.2 Allocation Example of CPU Backplane

Backplane: 7-module type
Power supply unit: 1 module
CPU: 1 module
I/O units used:
16-point type DC input unit: 2 units
16-point type transistor output unit: 3 units

3.2 Arbitrary Allocation

Registering with programming tool software Preparations
Display the allocation screen.

1. Set the "FPWIN GR" software to OFFLINE mode.
2. On the "Option" menu, select "Allocate I/O Map".

Creating allocations

1. In "No. of Slots", enter the number of modules(number of slots) to used. OE is assigned to the slots after they are specified.
In this case, the number of modules that can be used is 5 , so enter " 5 ".

2. Assign input (X) or output (Y) according to the I / O units to be installed in each slot.
Assign 16X to slots 0 and 1, and 16Y to slots 2 through 4.

When a system is configured with the FP2 backplane H type (AFP25***H), the display is shown as AFP25*** since no exclusive tool display is not available for the H type. The actual system is as shown below. (No indication of the power supply unit and expansion unit.)

Registering contents of allocation
Write the contents of allocation to the System register of the CPU.

1. On the "Online" menu, select "Online Edit Mode".
2. On the "File" menu, select "Download to PLC". The program is transferred to the PLC (programmable controller), and the contents of allocation are simultaneously written to the PLC as part of its system register settings.

3.2 Arbitrary Allocation

3.2.3 Allocation Example of Expansion Backplane

3.2.3.1 When Using FP2 Backplane

CPU backplane

Backplane: 7-module type
Power supply unit: 1 module
CPU: 1 module
I/O units:
16-point type DC input unit: 2 units
16-point type transistor output unit: 3 units

Expansion backplane

Backplane: 9-module type Power supply unit: 1 module I/O units:
16-point type relay output unit: 6 units 64-point type DC input unit: 1 unit

3.2.3.2 When Using FP2 Backplane H Type

3.2 Arbitrary Allocation

Registering with programming tool software (FPWIN GR) Create allocations

1. In "No. of Slots", add 16 to the number of modules used on the expansion backplane and enter the result.
OE is assigned to each of the specified slots. In this case, enter " 24 ".

2. Assign input (X) or output (Y) according to the I / O units to be installed in each slot.
In the example, assign 16X to slots 0 through 7, 16Y to slots 8 through 15, and 16X to slots 16 through 23.

Registering contents of allocation
Write the contents of allocation to the system register of the CPU.

1. On the "Online" menu, select "Online Edit Mode".
2. On the "File" menu, select "Download to PLC".

The program is transferred to the PLC (programmable controller), and the contents of allocation are simultaneously written to the PLC as part of its system register settings.

3.3 I/O Mount Allocation

3.3.1 Using I/O Mount Allocation

The I/O allocation state of mounted units is directly registered.
If an expansion backplane has been added on the FP2 backplane, the number of slots for I/O units on the CPU backplane is taken as 16 slots. (The FP2 backplane H type occupies 8 slots only.)
For a slot with no unit mounted, an equivalent of 16 points (16E) is allocated.

3.3.1.1 Example of I/O Mount Allocation

The I/O number in the diagram is the result of execution of I/O mount allocation.

CPU backplane

Backplane: 7-module type
Power supply unit: 1 module
CPU: 1 module I/O units:
16-point type DC input unit: 2 units 16-point type transistor output unit: 3 units

Expansion backplane

Backplane: 9-module type
Power supply unit: 1 module I/O units :
16-point type relay output unit: 6 units 64-point type DC input unit: 1 unit

At the expansion backplane, I/O numbers are allocated continuing from the last number allocated to slots that do not actually exist on the CPU backplane.

3.3 I/O Mount Allocation

3.3.1.2 Procedure for I/O Mount Allocation

Preparations

Turn on the power of the PLC and set the mode selector of the CPU to PROG. mode. Set the programming tool software to online monitor.

Procedure:

1. On the "Option" menu, select "Allocate I/O Map".

2. Click [Mount] button.

The following message appears, and then select [Yes].

FPWIN GR

This ocmmend updstes the UOO urit docstion and
the iemote $1 / 0$ alocation in the cument mourt stove of unit. Sue?

The appearance of the allocation of the mounted units will be read into and displayed on the FPWIN GR screen. At the same time, the contents of allocation will be registered in the system registers of CPU.

3.4 Automatic Allocation

3.4.1 Using Automatic Allocation

After turning on the power, I / O numbers are determined by the I / O unit installation positions and assigned in order beginning from the left side of the CPU backplane.
If an expansion backplane has been added on the FP2 backplane, the number of slots for I/O units on the CPU backplane is taken as 16 slots. (The FP2 backplane H type occupies 8 slots only.)
For a slot with no unit mounted, an equivalent of 16 points (16E) is allocated.
In the case of automatic allocation, I/O numbers are assigned based on the installed I/O units each time the power is turned on.

With automatic allocation, the contents of allocation are not registered to the system register.

3.4.1.1 Example of Automatic Allocation

The I/O numbers in the illustration are the allocated I/O numbers using automatic allocation.

CPU backplane

Backplane: 7-module type
Power supply unit: 1 module
CPU: 1 module

I/O units:

16-point type DC input unit: 2 units 16-point type transistor output unit: 3 units

Expansion backplane

Backplane: 9-module type
Power supply unit: 1 module I/O units:
16-point type relay output unit: 6 units 64-point type DC input unit: 1 unit

3.4 Automatic Allocation

At the expansion backplane, I/O numbers are allocated continuing from the last number allocated to slots that do not actually exist on the CPU backplane.

3.4.1.2 Procedure for Automatic Allocation

Automatic allocation is executed when the power is turned on. If I/O allocations have previously been registered using arbitrary allocation or I/O mount allocation, automatic allocation is not executed.
Clear the registered allocations and then turn on the power once again (ω section 3.5). The result of the automatic allocation will be the same as for I/O mount allocation.

3.5 Procedure for Clearing Registered Content

3.5.1 Meaning of Clearing Registered Content

To repeat the I/O allocation, it is necessary to clear registered content. Registered content is cleared by initializing the system registers.

Note

System registers not related to I/O allocations are also initialized. If you only want to change the registered I/O allocations, do not initialize the system registers. Instead, use arbitrary allocation (ω section 3.2).

3.5.2 Clearing Content Using Programming Tool Software

Preparations

Set the "FPWIN GR" tool software to online monitor.

Procedure:

1. On the "Option" menu, select "PLC Configuration".

2. Click [Initialize] button.

Select "PLC Configuration + I/O Unit + Remote I/O" and Click "OK" button. The content of system registers and I/O allocations will be cleared.

3.6 I/O Numbers of Free Slots

3.6.1 I/O Numbers of Free Slots

I/O numbers are also assigned to modules (slots) where no units are installed. Programming and system construction can be made more efficient by using an appropriate manner of assigning I/O numbers.

3.6.2 Differences Due to Allocation Methods

The manner of assigning I/O numbers differs depending on the I/O allocation method.

3.6.2.1 When Arbitrary Allocation is Used

I/O point numbers can assigned as desired.

Advantage

When designing a system with the intention of adding units in the future, you can use arbitrary allocation to assign ahead of time the I/O point numbers of the units to be added.

If no assignment is made, 0 is assigned.
By using I/O number assignments that take into account future expansion when creating the program, no discrepancies will occur when the new units are added on. Planning ahead for expansion improves efficiency.

* next page
3.6 I/O Numbers of Free Slots

Example of pre-assigning I/O numbers for a 64-point type input unit to a free slot

3.6 I/O Numbers of Free Slots

3.6.2.2 When I/O Mount Allocation is Used

When I/O mount allocation is executed, 16 points are uniformly assigned to each free slot.

Advantage

When the I/O unit that occupy 16 points is added, there is no need to worry about I/O number discrepancies.

3.6.2.3 When Automatic Allocation is Used

When automatic allocation is executed, 16 points are uniformly assigned to each free slot.

With automatic allocation, the contents of allocation are not registered. Assignments are performed each time the power of PLC is turned on based on the units actually mounted.

Advantage

Automatic allocation is convenient when frequent structural changes are conducted such as during trial runs and testing of the program. It is convenient when using a large number of standard I/O units (units that occupy 16 points).

3.6 I/O Numbers of Free Slots

Chapter 4

Installation and Wiring

4.1 Installation

4.1.1 Installation Space and Environment

Dimensions

Type of FP2 backplane	Type of FP2 backplane H type	L (mm/in.)
5-module type	-	$140 / 5.512$
7-module type	-	$209 / 8.228$
9-module type	-	$265 / 10.433$
12-module type	11-module type (Basic backplane) 10-module type (Expansion backplane)	$349 / 13.740$
14-module type	-	$405 / 15.945$

The 5-module type backplane has no connector for expansion. Installation to a DIN rail is possible.

4.1 Installation

Installation location

Be sure to maintain a sufficient distance from wiring ducts, and other machines below and above the unit for proper ventilation.

Do not install the units stacked up or horizontally. Doing so will prevent proper cooling of the unit and cause overheating inside the PLC (programmable controller).

Do not install the unit above devices which generate heat such as heaters, transformers or large scale resistors.
In order to eliminate any effects from noise emission, power wires and electromagnetic devices should be kept at least $100 \mathrm{~mm} / 13.937 \mathrm{in}$. away from the surfaces of the unit. When installing the unit behind the doors of the operation panel, be especially careful to maintain these distances.

Incorrect: Stacked-up installation

Incorrect: Upside-down installation

Incorrect: Horizontal installation

Correct: Proper installation

Space of Programming Tool Connection

Leave a space of at least $170 \mathrm{~mm} / 6.693 \mathrm{in}$. from the mounting surface for programming tool connections and wiring.

Operating environment

(Use the unit within the range of the general specifications when installing)
Ambient temperatures: 0 to $+55^{\circ} \mathrm{C}$
Ambient humidity: 30% to 85% RH (at $25^{\circ} \mathrm{C}$, non-condensing)
For use in pollution Degree 2 environment.

- Do not use it in the following environments.
- Direct sunlight
- Sudden temperature changes causing condensation.
- Inflammable or corrosive gas.
- Excessive airborne dust, metal particles or saline matter.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Direct vibration, shock or direct drop of water.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters,or any other equipment that would generate high switching surges. (100mm or more)

4.1 Installation

4.1.2 Mounting Method

4.1.2.1 Backplane

Mounting Hole Dimensions

(Unit mm/in.)

FP2 backplane

Type of backplane	Part number	L (mm/in.)
5-module type	FP2-BP05	$130 / 5.118$
7-module type	FP2-BP07	$199 / 7.835$
9-module type	FP2-BP09	$255 / 10.039$
12-module type	FP2-BP12	$339 / 13.346$
14-module type	FP2-BP14	$395 / 15.551$

FP2 backplane H type

Type of backplane	Part number	L (mm/in.)
11-module type (Basic backplane)	FP2-BP11MH	$339 / 13.346$
10-module type (Expansion backplane)	FP2-BP10EH	$339 / 13.346$

Attaching with Screws

Note

Secure the backplane while the unit is not installed.
(Tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$)

Procedure:

1. Lightly secure the upper part of the backplane using the mounting holes.
2. Align the mounting holes for the lower part and secure.
3. Tighten the upper screws.
4. Make sure that backplane is securely attached.

Installation to a DIN Rail

Procedure:

1. Attach the railing on the rear of the backplane to the DIN rail.
2. Push the backplane in the direction of the arrow, as illustrated below, so that it attaches securely.

Removal from a DIN Rail
Procedure:

1. Place the tip of a flat-headed screwdriver into the slot for the DIN rail attachment lever.
2. Pull out the DIN rail attachment lever with the flat-headed screwdriver and remove the backplane from the DIN rail.
(1)

4.1 Installation

4.1.2.2 Units

Be sure to install the unit according to the following procedures.

Notes

- Do not remove the dust proofing label that is attached to the upper portion of the unit until the unit is completely installed and the wiring is completed. However, be sure to remove the dust proofing label prior to operation (ω section 4.3.3).
- Complete the backup battery installation and operation condition switches setting prior to installing the CPU (w sections 2.2.1 and 4.1.4).

1) FP2 backplane

- With the CPU backplane, install in order from the left to the right, the power supply unit, the CPU, the I/O and the intelligent units.
With the expansion backplane, install in order from the left to the right, the power supply unit, the I/O and the intelligent units.
- Install a power supply unit on to the expansion backplane as well.
- Do not install a CPU on to the expansion backplane.

2) FP2 backplane H type

- The basic FP2 backplane that the CPU unit can be installed and the expansion backplane that other various units can be installed are available.
- The positions to install a power supply unit, CPU unit and I/O units are fixed. When using a 1-module type power supply unit, a space of 1 module will be created between the power supply unit and CPU unit, or between the power supply unit and I/O units.
- Do not put the wiring in the space in order to prevent the effect of radiation noise.
- Set the board No. setting switches on the expansion backplane.
- A power supply unit is also necessary on an expansion backplane.

Procedure:

1. Insert the installation tabs on the rear of the unit into the top of the backplane.

2. Push the unit in the direction of the arrow and install onto the backplane.
When installing the unit to the backplane, make sure the retaining hook firmly clicks into place and that the unit is properly secured to the backplane.

3. Attach the installation screws and further secure the unit to the backplane. For the 2 modules type unit, there are two installation screws.

4.1 Installation

Removing the unit

Procedure:

1. Loosen the installation screws.

2. Pull out the retaining hook at the bottom of the unit with the tip of a flat-headed screwdriver and remove the unit as illustrated below.

4.1.3 Connecting Expansion Cable

Attaching Connectors

Make sure that the expansion cable is firmly connected.
Do not subject the expansion cable to any twisting or stress.
Connect the expansion cable so that the ferrite core of the expansion cable is situated in close proximity to CPU backplane.

FP2 backplane

One backplane can be added on for expansion.

4.1 Installation

FP2 backplane H type

Three expansion backplanes H type can be added on for expansion.
Connect a cable from the connector of the basic backplane to the outside connector of the expansion backplane with the smallest number, and then connect a cable from the inside connector to the outside connector of the next expansion backplane.

Removing the expansion cable

Hold down the buttons on the side of the connector to release it from the locked condition and pull out the expansion cable.

4.1.4 Preparing the Backup Battery

With the FP2, be sure to remove the insulating sheet of the backup battery before installing the CPU onto backplane.

With the FP2SH, connect the connector of backup battery.
Make sure the connector terminals are positioned in the correct directions.

IC memory card: AFP2209

The battery has been removed from the battery holder before shipment. Install the battery before mounting the CPU unit.

1. Move to the lock switch to the RELEASE position (toward the battery holder).

2. Remove the battery holder.

3. Place the battery in the battery holder with the side with a '+' sign facing up.

4. Insert the battery holder with the battery all the way seated in the IC memory card.

* The lock swich is automatically back to the LOCK position when removing the battery holder.
In this state, insert the battery holder all the way seated.

Confirm the lock switch is in the LOCK position.

4.2 Power Supply Wiring

4.2.1 Wiring of Power Supply

Pin layout of power supply unit (FP2-PSA1 is used for the example below.)

Power supply voltage

Verify that the power supply voltage connected to the power supply unit is within allowable limits.

Type	Part number	Rated input voltage	Operating voltage rage	Rated output current
AC type	FP2-PSA1	100 to 120 V AC	85 to 132 V AC	2.5 A
	FP2-PSA2	200 to 240 V AC	170 to 264 V AC	2.5 A
	FP2-PSA3	100 to 240 V AC	85 to 264 V AC	5 A
DC type	FP2-PSD2	24 V DC	20.4 to 31.2 V DC	5 A

Power supply wire

Use power supply wire that is thicker than $2 \mathrm{~mm}^{2}$ (AWG14) to minimize the voltage drop.

Pressure connection terminal

The following M3 pressure connection terminals are recommended for the wiring.

Fork type terminal

Round type terminal

* next page

4.2 Power Supply Wiring

Example of suitable pressure connection terminal

Manufacturer	Shape	Part number	Suitable wire
JST Mfg. Co., Ltd.	Round type	$2-$ N3A	1.04 to $2.63 \mathrm{~mm}^{2}$
	Fork type	$2-$ MS3	Use wire that is thicker than $2 \mathrm{~mm}^{2}$.

Power supply system

Use separate wiring systems for the FP2/FP2SH power supply unit output devices and motorized devices.

Use the same power supply system for the expansion backplane and CPU backplane so that they are turned on and off simultaneously.

Eliminating effects from noise

Use a low noise power supply
There is sufficient noise resistance for superimposed noise in the power supply wiring, however using an insulated transformer is recommended for further noise protection.

Twist the power supply wire to minimize the effects of noise.

4.2.2 Grounding

Always ground the FP2/FP2SH PLC.
Ground the unit with the ground terminal as illustrated below.

For grounding purposes, use ground wires with a minimum of $2 \mathrm{~mm}^{2}$ (AWG14) and the grounding connection should have a resistance of less than 100Ω.

The point of grounding should be as close to the FP2/FP2SH PLC as possible. The ground wire should be as short as possible.
If two devices share a single ground point, it may produce an adverse effect. Always use an exclusive ground for each device.

CORRECT

4.3 Wiring Input and Output

4.3 Wiring Input and Output

4.3.1 Input Wiring

Before the wiring, carefully confirm the specifications for the units to be wired. Specifically, limitations on the ambient temperature and number of points that can be on simultaneously will differ for different units.

Connection of Sensors

Relay output type

Voltage output type

PNP open collector output type

NPN open collector output type

Two-wire type

Connection of LED-equipped Reed Switch

With a LED is connected to an input contact such as LED-equipped reed switch, make sure that the voltage value applied to the input terminal of PLC is greater than on voltage value.
In particular, take care when connecting a number of switches in series.

Connection of Two-wire Type Sensor

If the input of the PLC is not turned off because of leakage current from the two-wire type sensor, the connection of a bleeder resistor is recommended, as shown below.

The off voltage of the input is 2.5 V , therefore, select an R value so that the voltage between the COM terminal and the input terminal will be less than 2.5 V .
The input impedance is $3 \mathrm{k} \Omega$.
The resistance R of the bleeder resistor is: $R \leqq \frac{7.5}{3 \times \mathrm{I}-2.5}(\mathrm{k} \Omega)$
The wattage W of the resistor is: $\mathrm{W}=\frac{\left(\text { Power supply voltage) }{ }^{2}\right.}{\mathrm{R}}$
In the actual selection, use a value that is 3 to 5 times the value of W .

4.3 Wiring Input and Output

Connection of LED-equipped Limit Switch

With the LED-equipped limit switch, if the input of the PLC is not turned off or if the LED of the limit switch is kept on because of the leakage current, the connection of a bleeder resistor is recommended, as shown below.

Using 16-point type DC input unit (FP2-X16D2)
(Off voltage: 2.5 V , Input impedance: $3 \mathrm{k} \Omega$)

r: Internal resistor of limit switch (k Ω)
R: Bleeder resistor ($k \Omega$)
The off voltage of the input is 2.5 V , therefore when the power supply voltage is 24 V , select R so that
the current will be greater than $I=\frac{24-2.5}{r}$
The resistance R of the bleeder resistor is: $R \leqq \frac{7.5}{3 \times \mathrm{I}-2.5}(\mathrm{k} \Omega)$
The wattage W of the resistor is: $W=\frac{\left(\text { Power supply voltage) }{ }^{2}\right.}{R}$

In the actual selection, use a value that is 3 to 5 times the value of W .

4.3.2 Output Wiring

Before the wiring, carefully confirm the specifications for the units to be wired. Specifically, limitations on the ambient temperature, number of points that can be on simultaneously and load current will differ for different units.
Use a protection circuit when connecting inductive loads and capacitive loads.

Connection of Inductive Loads

When connecting an inductive load, a protective circuit should be connected in parallel with the load.
When connecting the DC type inductive loads and relay type output unit, be sure to connect a diode for protective circuit across the ends of the load. This will effect the life of the relay.

When using an AC type inductive load

When using a DC type inductive load

4.3 Wiring Input and Output

Connection of Capacitive Loads

When connecting the loads with large in-rush currents, be sure to connect a protection circuit such as resistor or inductor in series with the load as shown below.

Precautions for Overload

To protect the units from overloading, it is recommended to attach an external fuse for each point. There are times that the elements for the output units cannot be protected even if external fuses are connected.

4.3.3 Cautions Regarding Units

Wiring

Arrange the wiring so that the input and output wiring are separated, and so that the input and output wiring is separated from the power wiring, as so much as possible. Do not route them through the same duct or wrap them up together.
Separate the wires of input/output circuit from the power and high voltage wires by at least $100 \mathrm{~mm} / 3.937 \mathrm{in}$.

Dust Proofing Label

Do not remove the dust proofing label that is attached to the upper portion of the unit until the unit is completely installed and the wiring is completed. However, be sure to remove the dust proofing label prior to operation.

4.4 Wiring the Connector Type I/O Units

4.4.1 Wiring the Connector Type Units

Wiring Method

There are 4 methods for wiring to a connector type I/O unit. Choose the most appropriate method depending on the installation conditions. The set of connector for wire-pressed terminal cable is supplied with the unit.

When using connector for wire-pressed terminal cable(supplied with the unit) You can directly connect wires from AWG 22 ($0.3 \mathrm{~mm}^{2}$) and AWG $24\left(0.2 \mathrm{~mm}^{2}\right)$.
Eliminates the bother of wiring connections because the wires can be connected without removing the covers from the wires.
Can correct wiring mistakes easy.
A tool exclusively designed for this purpose is necessary.
For detailed information section 4.4.2

When using connector and relay terminals

Can be connected using exclusive cables.
With the RT-2 relay terminal, you can control up to 2A.
For detailed information section 4.4.3
\qquad

4.4 Wiring the Connector Type I/O Units

When using cable with pressure connection terminal

The connector converted to a pressure connection terminal using the exclusive cable.
The I/O numbers and corresponding pressure connection terminal pin numbers are the same as for connector terminals on section 4.4.3.

When using flat cable

There is a cable with a connector on only one end.
When using suitable connector, you can use a commercially available flat cable.
For detailed information section 4.4.4
Table of Connector and Terminal

Number or connector pins				40 pins Supplied with the unit Maintenance part number: AFP2801
Using connector for wire-pressed terminal cable	Housing			
	Contact (for AWG22 and AWG24)			
	Semi-cover			
	Pressure connection tool			AXY52000FP
Using terminal	CT-2 connector terminal	DIN rail mounting type		AYC1140
		Connector	$1 \mathrm{~m} / 3.281 \mathrm{ft}$.	AYT51403
		cable	$2 \mathrm{~m} / 6.562 \mathrm{ft}$.	AYT51405
	RT-2 relay terminal (*Note 2)	DIN rail mounting type		AY231502 for input AY232502 for output
		Connector terminal cable	$1 \mathrm{~m} / 3.281 \mathrm{ft}$.	AY15633
			2m/6.562ft.	AY15635
Using cable with pressure connection terminal	1m/3.281ft.			AYT58403
	2m/6.562ft.			AYT58405
Using flat cable	Flat cable with a connector on one end		1m/3.281ft.	AFB8541
			2m/6.562ft.	AFB8542
	Connector only			AFP2802 (40-pin connectors)

Notes

1) The connectors for wire-pressed terminal cable (40 pins) are supplied with the unit.
2) The RT-2 relay terminal cannot be used with PNP collector output type output units (FP2-Y32P, FP2-Y64P, FP2-XY64D2P and FP2-XY64D7P).

4.4.2 Connecting with Connector for Wire-pressed Terminal Cable

Connector for Wire-pressed Terminal Cable

This is a connector that allows loose wires to be connected without removing the wire's insulation.

The pressure connection tool is required to connect the loose wires.

Connector for wire-pressed terminal cable (40 pins)

Rewiring

If there is a wiring mistake or the wire is incorrectly pressure-connected, the contact puller pin provided with the fitting can be used to remove the contact.

Press the housing against the pressure connection tool so that the contact puller pin comes in contact with this section.

Suitable Wires (twisted wire)

Size	Cross section area	Insulation thickness	Remark	Rated current
AWG22	$0.3 \mathrm{~mm}^{2}$	dia.1.5 to dia.1.1	Twisted wire of $12 \mathrm{pcs} / 0.18$	3 A
			Twisted wire	

Note

The contact suitable for AWG\#22 or AWG\#24 is supplied with the product. For purchasing a contact suitable for AWG\#26 or AWG\#28, specify AFP7231FP.

Connector for Wire-pressed Terminal Cable

Unit type	Composition of accessories		
	Housing	Semi-cover	Contact
32-point input unit 32-point output unit	1 pc	2 pcs	5 pins $\times 8$
64-point input unit 64-point output unit 32-point input/32-point output unit	2 pcs	4 pcs	5 pins $\times 16$

Pressure Connection Tool

Part number: AXY52000FP

4.4 Wiring the Connector Type I/O Units

Assembly of Connector for Wire-pressed Terminal Cable

The wire end can be directly press-fitted without removing the wire's insulation, saving labor.

Procedure:

1. Bend the contact back from the carrier, and set it in the pressure connection tool.

2. Insert the wire without removing its insulation until it stops, and lightly grip the tool.

3. After press-fitting the wire, insert it into the housing.

4. When all wires has been inserted, fit the semi-cover into place.

4.4.3 Connecting the Terminals

CT-2 Connector Terminal

Use a 40-pin type CT-2 connector terminal.
For connecting the terminal to the terminal block, use M3-sized pressure connection terminals.

Note

If using the CT-2 connector terminal for the input, connect between the COM terminals.
If using the CT-2 connector terminal for the output, 24V DC should be supplied between (+) and (-) terminals. Power is supplied to drive the internal circuit of the output unit. (Connect between each the (+) terminals and between each the (-) terminals.)

CT-2 connector terminal connection diagram for 32-point type and 64-point type I / O units and I / O mixed units

4.4 Wiring the Connector Type I/O Units

Correspondence table of 32-point type input unit

When a 32-point type input unit is next to the standard type CPU on the right side.

Terminal number	Input number	Terminal number	Input number
A1	X0	B1	X8
A2	X1	B2	X9
A3	X2	B3	XA
A4	X3	B4	XB
A5	X4	B5	XC
A6	X5	B6	XD
A7	X6	B7	XE
A8	X7	B8	XF
A9	COM	B9	COM
A10	NC	B10	NC
A11	X10	B11	X18
A12	X11	B12	X19
A13	X12	B13	X1A
A14	X13	B14	X1B
A15	X14	B15	X1C
A16	X15	B16	X1D
A17	X16	B17	X1E
A18	X17	B18	X1F
A19	COM	B19	COM
A20	NC	B20	NC

Correspondence table of 64-point type input unit

When a 64-point type input unit is next to the standard type CPU on the right side.

Examples for the CN1 group

Terminal number	Input number	$\begin{aligned} & \text { Terminal } \\ & \text { number } \end{aligned}$	Input number
A1	X0	B1	X8
A2	X1	B2	X9
A3	X2	B3	XA
A4	X3	B4	XB
A5	X4	B5	XC
A6	X5	B6	XD
A7	X6	B7	XE
A8	X7	B8	XF
A9	COM	B9	COM
A10	NC	B10	NC
A11	X10	B11	X18
A12	X11	B12	X19
A13	X12	B13	X1A
A14	X13	B14	X1B
A15	X14	B15	X1C
A16	X15	B16	X1D
A17	X16	B17	X1E
A18	X17	B18	X1F
A19	COM	B19	COM
A20	NC	B20	NC

Examples for the CN2 group

| Terminal
 number | Input
 number | Terminal
 number | Input
 number |
| :--- | :--- | :--- | :--- | :--- |
| A1 | X20 | B1 | X28 |
| A2 | X21 | B2 | X29 |
| A3 | X22 | B3 | X2A |
| A4 | X23 | B4 | X2B |
| A5 | X24 | B5 | X2C |
| A6 | X25 | B6 | X2D |
| A7 | X26 | B7 | X2E |
| A8 | X27 | B8 | X2F |
| A9 | COM | B9 | COM |
| A10 | NC | B10 | NC |
| A11 | X30 | B11 | X38 |
| A12 | X31 | B12 | X39 |
| A13 | X32 | B13 | X3A |
| A14 | X33 | B14 | X3B |
| A15 | X34 | B15 | X3C |
| A16 | X35 | B16 | X3D |
| A17 | X33 | B17 | X3E |
| A18 | X37 | B18 | X3F |
| A19 | COM | B19 | COM |
| A20 | NC | B20 | NC |

Correspondence table of 32-point type output unit
When a 32-point type output unit is next to the standard type CPU on the right side.

Terminal number	Output number	Terminal number	Output number
A1	YO	B1	Y8
A2	Y1	B2	Y9
A3	Y2	B3	YA
A4	Y3	B4	YB
A5	Y4	B5	YC
A6	Y5	B6	YD
A7	Y6	B7	YE
A8	Y7	B8	YF
A9	-	B9	-
A10	+	B10	+
A11	Y10	B11	Y18
A12	Y11	B12	Y19
A13	Y12	B13	Y1A
A14	Y13	B14	Y1B
A15	Y14	B15	Y1C
A16	Y15	B16	Y1D
A17	Y16	B17	Y1E
A18	Y17	B18	Y1F
A19	-	B19	-
A20	+	B20	+

Correspondence table of 64-point type output unit

When a 64-point type output unit is next to the standard type CPU on the right side.

Examples for the CN1 group

Terminal number	Output number	Terminal number	Output number
A1	YO	B1	Y8
A2	Y1	B2	Y9
A3	Y2	B3	YA
A4	Y3	B4	YB
A5	Y4	B5	YC
A6	Y5	B6	YD
A7	Y6	B7	YE
A8	Y7	B8	YF
A9	-	B9	-
A10	+	B10	+
A11	Y10	B11	Y18
A12	Y11	B12	Y19
A13	Y12	B13	Y1A
A14	Y13	B14	Y1B
A15	Y14	B15	Y1C
A16	Y15	B16	Y1D
A17	Y16	B17	Y1E
A18	Y17	B18	Y1F
A19	-	B19	-
A20	+	B20	+

Examples for the CN2 group

Terminal number	Output number	Terminal number	Output number
A1	Y20	B1	Y28
A2	Y21	B2	Y29
A3	Y22	B3	Y2A
A4	Y23	B4	Y2B
A5	Y24	B5	Y2C
A6	Y25	B6	Y2D
A7	Y26	B7	Y2E
A8	Y27	B8	Y2F
A9	-	B9	-
A10	+	B10	+
A11	Y30	B11	Y38
A12	Y31	B12	Y39
A13	Y32	B13	Y3A
A14	Y33	B14	Y3B
A15	Y34	B15	Y3C
A16	Y35	B16	Y3D
A17	Y36	B17	Y3E
A18	Y37	B18	Y3F
A19	-	B19	-
A20	+	B20	+

4.4 Wiring the Connector Type I/O Units

Correspondence table of 32-point input/32-point output type I/O mixed unit When the I/O mixed unit is next to the standard type CPU on the right side.

Examples for the CN1 group

Terminal number	Input number	Terminal number	Input number
A1	X0	B1	X8
A2	X1	B2	X9
A3	X2	B3	XA
A4	X3	B4	XB
A5	X4	B5	XC
A6	X5	B6	XD
A7	X6	B7	XE
A8	X7	B8	XF
A9	COM	B9	COM
A10	NC	B10	NC
A11	X10	B11	X18
A12	X11	B12	X19
A13	X12	B13	X1A
A14	X13	B14	X1B
A15	X14	B15	X1C
A16	X15	B16	X1D
A17	X16	B17	X1E
A18	X17	B18	X1F
A19	COM	B19	COM
A20	NC	B20	NC

Examples for the CN2 group

Terminal number	Output number	Terminal number	Output number
A1	Y20	B1	Y28
A2	Y21	B2	Y29
A3	Y22	B3	Y2A
A4	Y23	B4	Y2B
A5	Y24	B5	Y2C
A6	Y25	B6	Y2D
A7	Y26	B7	Y2E
A8	Y27	B8	Y2F
A9	-	B9	-
A10	+	B10	+
A11	Y30	B11	Y38
A12	Y31	B12	Y39
A13	Y32	B13	Y3A
A14	Y33	B14	Y3B
A15	Y34	B15	Y3C
A16	Y35	B16	Y3D
A17	Y36	B17	Y3E
A18	Y37	B18	Y3F
A19	-	B19	-
A20	+	B20	+

RT-2 Relay Terminal

For 64-point type output unit (FP2-Y64T), you can connect four sets of the RT-2 relay terminals with 16 outputs by using two-branch type cable.

For 32-point type output unit (FP2-Y32T) and output connector side of I/O mixed unit (FP2-XY64D2T, FP2-XY64D7T), you can connect two sets of the RT-2 relay terminals with 16 outputs by using two-branch type cable.

For connecting the terminal to the terminal block, use M3-sized pressure connection terminals.

RT-2 relay terminal connection diagram for 32-point type and 64-point type output units and $\mathrm{I} / 0$ mixed units

24V DC should be supplied between the (+) and (-) terminals of the relay terminal. Power is supplied to drive the relays of the terminal itself. The I/O power supply supplied to the units and the power supply supplied to the RT-2 relay terminals are the same power supply.

Correspondence table of RT-2 relay terminal

Terminal number	Output number	Terminal number	Output number
0+	YO	8+	Y8
1+	Y1	9+	Y9
2+	Y2	A+	YA
3+	Y3	B+	YB
COM+	COM terminal for Y0 to Y3	COM+	COM terminal for Y8 to YB
4+	Y4	C+	YC
5+	Y5	D+	YD
6+	Y6	E+	YE
7+	Y7	F+	YF
COM-	COM terminal for Y4 to Y7	COM-	COM terminal for YC to YF

4.4 Wiring the Connector Type I/O Units

4.4.4 Connecting with Flat Cable Connector

When connecting with a flat cable connector, the relationship between the cable number and I/O number is shown below.

Correspondence table of cable number and I/O number

Examples for the CN1 group

Cable No.	Input No.	Outp ut No.
$\mathbf{1}$	X 0	Y 0
$\mathbf{2}$	X 8	Y 8
$\mathbf{3}$	X 1	Y 1
$\mathbf{4}$	X 9	Y 9
$\mathbf{5}$	X 2	Y 2
$\mathbf{6}$	XA	YA
$\mathbf{7}$	X 3	Y 3
$\mathbf{8}$	XB	YB
$\mathbf{9}$	X 4	Y 4
$\mathbf{1 0}$	XC	YC
$\mathbf{1 1}$	X 5	Y 5
$\mathbf{1 2}$	XD	YD
$\mathbf{1 3}$	X 6	Y 6
$\mathbf{1 4}$	XE	YE
$\mathbf{1 5}$	X 7	Y 7
$\mathbf{1 6}$	XF	YF
$\mathbf{1 7}$	COM	-
$\mathbf{1 8}$	COM	-
19	NC	+
20	NC	+

Examples for the CN2 group

Cable No.	Input No.	Outp ut No.	Cable No.	Input No.	Outp ut No.
1	X20	Y20	21	X30	Y30
2	X28	Y28	22	X38	Y38
3	X21	Y21	23	X31	Y31
4	X29	Y29	24	X39	Y39
5	X22	Y22	25	X32	Y32
6	X2A	Y2A	26	X3A	Y3A
7	X23	Y23	27	X33	Y33
8	X2B	Y2B	28	X3B	Y3B
9	X24	Y24	29	X34	Y34
10	X2C	Y2C	30	X3C	Y3C
11	X25	Y25	31	X35	Y35
12	X2D	Y2D	32	X3D	Y3D
13	X26	Y26	33	X36	Y36
14	X2E	Y2E	34	X3E	Y3E
15	X27	Y27	35	X37	Y37
16	X2F	Y2F	36	X3F	Y3F
17	COM	-	37	COM	-
18	COM	-	38	COM	-
19	NC	+	39	NC	+
20	NC	+	40	NC	+

Flat Cable Connection Diagram for the 32-point Type I/O Units, 64-point Type I/O Units and I/O Mixed Unit

Flat Cable Connector

Item	Part number
Set of flat cable connector	AFP2802
Flat cable connector (with strain relief, pitch of 1.27 mm) (2 pieces)	-

Suitable Wires (twisted wire)

Size	Pitch	Rated current
AWG28 (7pcs./dia.0.127)	1.27 mm	1 A

4.5 Wiring the Terminal Block Type I/O Units

4.5 Wiring the Terminal Block Type I/O Units

4.5.1 Wiring the Terminal Block Type Units

Suitable Wires

Size	Torque
AWG22 to AWG14 $\left(0.3 \mathrm{~mm}^{2}\right.$ to $\left.2.0 \mathrm{~mm}^{2}\right)$	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$

Pressure Connection Terminals

M3.5 terminal screws are used for the terminals. The following pressure connection terminals are recommended for the wiring to the terminals.

Fork type terminal

Round type terminal

Example of suitable pressure connection terminal

Manufacturer	Shape	Part number	Suitable wire
JST Mfg. Co., Ltd.	Round type	$1.25-$ MS3	0.0 .25 to $1.65 \mathrm{~mm}^{2}$
	Fork type	$1.25-$ B3A	
	Round type	2-MS3	1.04 to $2.63 \mathrm{~mm}^{2}$
	Fork type	$2-$ N3A	

Wiring to Terminal Block

Remove the terminal block before beginning the wiring operations. To remove the terminal block, push downward on the release lever located at the top of the terminal block.

Note

Install the terminal block by inserting it all the way to its original position and pressing the lock button on the bottom of the unit. Then confirm that the terminal block is securely attached and cannot be removed.

Use the numbers described on the terminal cover by replacing with the printed contents of the terminal layout for the main unit.

4.6 Safety Measures

4.6.1 Safety Instructions

Precautions Regarding System Design

In certain applications, malfunction may occur for the following reasons:
Power on timing differences between the PLC system and I/O or motorized devices
An operation time lag when a momentary power failure occurs
Abnormality in the PLC, external power supply, or other devices

In order to prevent a malfunction resulting in system shutdown choose the adequates safety measures listed in the following:

Interlock circuit

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

Emergency stop circuit

Add an emergency stop circuit to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

Start up sequence

The PLC should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended:

Turn on the PLC with the mode selector set to the PROG. mode, and then switch to the RUN mode.

Program the PLC so as to disregard the inputs and outputs until the outside devices are energized.

Note

When stopping the operation of PLC also, have the I/O devices turned off after the PLC has stopped operating.

Alarm function

When an alarm occurs, the PLC turns off the output and stops operation. Even while in this condition, take the appropriate safety precautions outside of the PLC to ensure no malfunction or damage is transmitted to anywhere else in the system.

Grounding

When installing the PLC next to devices that generate high voltages from switching, such as inverters, do not ground them together.

4.6.2 Momentary Power Failures

If the duration of the power failure is less than 10 ms , the PLC continues to operate.
If the duration of the power failure is 10 ms or longer, the operation changes depending on the combination of units, the power supply voltage, and other factors. If the PLC continues to operate, the operation may be the same as that for a power supply reset.
The duration of the power failure is the time that the power to the power supply unit stops.

4.6.3 Alarm Output

The alarm output goes on when the watchdog timer is activated by a program error or an error in the hardware itself.
The alarm output terminal has two relay contacts, N.O. (normally open) and N.C. (normally closed). This can be used as an external alarm signal when an error occurs.

Watchdog timer

The watchdog timer is a program error and hardware error detection timer. It goes on when the scan time exceeds 640 ms .
When the watchdog timer is activated, at the same time the ALARM LED lights, the ALARM contacts on the power supply unit go on, all outputs to the output units are turned off and the unit is put in halted state. The system is in a non-processing state that includes communications with programming tools as well.

Note
The ALARM contacts of the power supply unit installed on the expansion backplane will not also operate.

4.6 Safety Measures

Chapter 5

Procedure Until Operation

5.1 Before Turning ON the Power

5.1 Before Turning ON the Power

5.1.1 Check Items

After wiring, be sure to check the items below before turning on the power supply to the FP2/FP2SH system.

Item	Description
Unit mounting status	Does the unit type match the device list during the design stage? Are the unit mounting screws properly tightened? Is the unit dust-protected label detached? Are the installation screws for the expansion memory unit properly tightened? Does the power supply unit type match the actual power supply? Is the lock button for the input/output terminal block properly locked?
Wiring	Are the terminal block mounting screws properly tightened? Does the wiring of terminal match the signal name? Wiring size to small for the current that is carried?
Connection cable	Is the expansion cable properly connected? Is the connection connector properly locked? Is the total length 3.2 m or less? (FP2 backplane H type only)
Setting of CPU	Is the mode selector set to the PROG. mode? Are the specifications for the ROM and RAM correct?
Backup battery of CPU	Has the insulating sheet for the FP2 CPU battery been removed? Is the battery connector for the FP2SH CPU firmly connected?
Expansion backplane	<FP2 backplane H type only> Are the settings of the board No. setting switches correct?
Set of memory backup battery for IC memory card	<AFP2209 only> Is the included battery installed?
Other	Carefully check if there is potential for an accident.

5.1 Before Turning ON the Power

5.1.2 Procedure Up To Operation

After installing and wiring, perform the operation by following procedure.

Procedure:

1. Power on

1) Before turning on the power, check the items described on the previous page.
2) Turn on the power and then, check that the power supply unit's POWER LED and CPU's PROG. LED are on.
2. Enter the program
1) When using a programming tool, perform the operation "Clear Program" before inputting.
2) Enter the program using the programming tool software.
3) Use the programming tool's "total check function" to check for syntax errors.
3. Check output wiring

Use the forced I/O function to check the output wiring.
4. Check input wiring

Check the input wiring by using the input display LEDs or the monitoring function of the programming tool.
5. Trial operation

1) Switch the mode selector from PROG. to RUN mode, check the RUN LED turns on.
2) Check the operation of the program.
6. Edit the program (debug) if necessary
1) If there is an error in the operation, check the program using the monitoring function of the programming tool.
2) Correct the program.

7. Save the edited program

We highly recommend to save the created program onto a floppy disk or hard disk. Printing out is also possible. The program can also be saved on the ROM.

5.2 Programming with Programming Tool Software

5.2.1 Preparations

Setting the baud rate of CPU

The baud rate setting switch is on the rear side of the CPU. Perform the setting with the CPU removed from the backplane.

Set the baud rate of the computer to match that of the CPU.

Connecting the FP2/FP2SH to the computer

Connect using the FP PC cable.

Computer settings

Set to asynchronous. For the setting procedure, refer to the operation manual that came with the computer.

5.2 Programming with Programming Tool Software

5.2.2 Configuration of Programming Tool Software

Depending on the PLC type and conditions of use, it is necessary to set the basic configuration for programming tool software. Be sure to set these parameters of configration before beginning programming.

5.2.2.1 Parameters and Setting Methods

Select PLC type

Select the PLC type that is being used.

Expansion memory unit used	Selection
None installed	FP2 16k
The FP2-EM1 or FP2-EM7 is installed	FP2 16k
The FP2-EM2, FP2-EM3, or FP2-EM6 is installed	FP2 32k

FP2SH CPU type	Selection
FP2-C2L	FP2SH 32k
FP2-C2, FP2-C2P	FP2SH 60k
FP2-C3P	FP2SH 120k

After your selection, you can change the PLC type.

Communication Settings

Select the Network type or communication format.
In case if RS232C

[Baud rate]
PLC default : 9600 bps
[Data length] PLC default : 8 bits
[Stop bit]
PLC default : 1 bit
[Parity]
PLC default : Odd

In case of Ethernet

For more detail, refer to the FPWIN GR software help.

5.2 Programming with Programming Tool Software

Chapter 6

FP2/FP2SH Operation

6.1 FP2 Operation

6.1.1 FP2 RAM and ROM Operations

6.1.1.1 Comparison of RAM and ROM Operations

With the FP2, either RAM operation or ROM operation can be selected for the execution method of the program.

RAM operation: Executes the program written into the internal RAM of the CPU.
ROM operation: Transfers the program stored in the ROM of the expansion memory unit to RAM and executes the program.
Comparison of RAM operation and ROM operation

Item	RAM operation	ROM operation
Items necessary for operation	Nothing in particular since operation is performed by the RAM built into the CPU. Normal maximum number of steps is 16 k . With the optional expansion memory unit (FP2-EM2, FP2-EM3 or FP2-EM6) installed, the maximum number of steps is 32 k .	Optional expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7) ROM with the program written on it
Processes inside the CPU	Program written in RAM is executed when RUN mode is entered.	When the power is turned on, the program in ROM is transferred to RAM, and then executed.
Memory contents backed up by battery	Program System registers Hold type data of operation memory	Hold type data of operation memory (The program and the system register within ROM are saved without battery.)
Maintenance	Replacement of backup battery is vital	If program does not use hold type data of operation memory, then operation without a backup battery is possible.

6.1 FP2 Operation

6.1.1.2 Retaining the Data During Power Outages

For the operation memory, such as that for internal relays and data registers, the data that is set as hold-type memory is backed up by the backup battery.

Note

If the internal relays and data registers are set to be non-hold type, then they will not be saved.

Battery-less operation

During ROM operation, if it is not necessary to retain the internal relays and data registers, then you can set them all to non-hold type and perform operation without a backup battery.

6.1.1.3 Setting the Battery Error Warnings

Under normal conditions, if an error occurs with the backup battery, the BATT. and ERROR LEDs on the front of the CPU are on for battery error warning. With ROM operation that does not require the backup battery for operation memory, it is possible to set it so that this warning is not given. With this setting, the BATT. and ERROR LEDs do not light.

Method

The programming tool software is required in order for this setting to be effective.

Procedure:

1. On the "Option" menu, select "PLC Configuration".
2. Select "Initial Switch" tab.

3. Check "Alarm battery error" off.

6.2 FP2 RAM Operation

6.2.1 RAM Operation Method

Verify that the operation condition switches (DIP switches) on the back of the FP2 CPU are set for RAM operation (SW2 off).

FP2 CPU
rear side

The CPU is set at the factory for RAM operation.

6.2.2 Precautions When Operating the RAM

The contents written to RAM are all saved by the backup battery. Therefore, it is important to be aware of the life of the backup battery.

Note

Using programming tool software, be sure to copy the program in RAM to the hard disk of the host computer or to a floppy disk.

6.3 FP2 ROM Operation

6.3 FP2 ROM Operation

6.3.1 ROM Operation Method

Preparation

Turn off the power supply and remove the CPU from the backplane. Install the expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7) to the CPU. Then install the ROM that writes the program to the expansion memory unit. (w section 2.3)

Procedure:

1. Set the operation condition switches (DIP switches) on the back of the CPU for ROM operation (SW2 on).

FP2 CPU rear side

2. Reattach the CPU to the original position on the backplane.
When the power supply is turned on, the program in the ROM is transferred to the internal RAM.

When the power supply is turned on, the data that was in the RAM will be erased.

6.3.2 Verifying the ROM Contents in RAM Operation

When the operation condition switches (DIP switch) on the rear side of the CPU is set for RAM operation, the CPU reads the contents of the internal RAM. To check the contents of the ROM, you must first copy the contents to RAM by following the procedure below.

Preparation

Have programming tool software ready for use.
Set the CPU to the "PROG." mode.

Procedure:

1. On the "Online" menu, select "Online Edit Mode".
2. On the "Tool" menu, select "ROM\&RAM Service".

3. Select "ROM - RAM" and click "Execute" button. The contents of ROM are copied to the internal RAM.

6.4 Writing to ROM

6.4 Writing to ROM

6.4.1 Writing to EPROM Using Programming Tool Software

This method entails using programming tool software at the computer to send the program directly to any commercially available ROM writer and writing the data to the ROM.

Preparation

Connect the commercially available ROM writer to the computer.
Attach the optional memory EPROM (FP2-EM5) in the commercially available ROM writer. Read the program with programming tool software.

Procedure:

1. On the "Option" menu, select "Communication Settings", and set the transmission speed and communication format that matched that for the ROM writer.
2. On the "Tool" menu, select "ROM Writer".

3. Select "Write" and "Serial Port" and click "Execute" button. The program is copied to the ROM writer.
4. Write the data to the optional memory EPROM (FP2-EM5) with the commercially available ROM writer. The specification of commercially available ROM writer set to EPROM "M27C1001-12F1 or equivalent" (SGSTHOMSON MICROELECTRONICS).

6.4 Writing to ROM

6.4.2 Writing to EPROM via FROM

Preparation

Prepare the optional memory FROM (FP2-EM4), the optional memory EPROM (FP2-EM5), and the expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7). Also prepare a commercially available ROM writer.

Procedure:

Perform the procedures described in "A" through "D" below. When writing to EPROM, continue on to steps " E ".
A. Passing the program

1. Pass the program within the CPU. Operations using FPWIN GR On the "File" menu, select "Upload from PLC" and read the program from the PLC.
On the "File" menu, select "Save as" and save the program to a disk.
2. Turn the power off and remove the CPU from the backplane.
3. Install the expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7) to the CPU. Attach the optional memory FROM (FP2-EM4) to the expansion memory unit.
(${ }^{(-)}$section 2.3)

FP2 CPU
4. Verify that the SW2 of operation condition switches (DIP switches) on the back of the CPU are set to RAM operation position (off).

5. Reattach the CPU to it original position on the backplane.
B. Clearing the program within the CPU

Note
If inputting of the program is done without first performing this operation, the contents of the internal RAM of CPU may become improper.

Operations using FPWIN GR

1. On the "Online" menu, select "Online Edit Mode".
2. On the "Edit" menu, select "Clear Program".

6.4 Writing to ROM

C. Reading a program from disk

Operations using FPWIN GR

On the "File" menu, select "Open" and load the program from disk.
D. Writing the program from the CPU to the optional memory FROM Operations using FPWIN GR

1. On the "Online" menu, select "Online Edit Mode".
2. On the "Tool" menu, select "ROM \& RAM Service".

3. Select "ROM <-- RAM" and click "Execute" button.

For information on operating the menus, please check the Help menu.
E. Writing to the optional memory EPROM with the ROM writer

1. Remove the optional memory FROM from the expansion memory unit and install it in the ROM writer.
2. Copy the contents of the optional memory FROM to the ROM writer.

3. Remove the optional memory FROM and install the optional memory EPROM and write the data to the EPROM.

6.5 FP2SH Operation

6.5.1 Comparison of RAM, ROM, and IC Memory Card Operation

With the FP2SH, the user can select "RAM operation", "ROM operation", or "IC memory card operation" as the method by which programs are to be executed.

RAM operation

Programs written to the RAM in the CPU unit are executed.

ROM operation

With the FP2-C2L or FP2-C2, programs written to the ROM in the expansion memory unit are sent once to the RAM and executed. With the FP2-C2P or FP2-C3P, programs written to the internal FROM are sent once to the RAM and executed.

IC memory card operation (FP2-C2P and FP2-C3P are supported):

Programs written to the IC memory card are sent to the RAM and executed.
$\left.\begin{array}{|l|l|l|l|}\hline \text { Item } & \begin{array}{l}\text { RAM operation } \\ \text { (SW2: off, SW4: - }\end{array} & \begin{array}{l}\text { ROM operation } \\ \text { (SW2: on, SW4: off) }\end{array} & \begin{array}{l}\text { IC memory card operation } \\ \text { (SW2: on, SW4: on) }\end{array} \\ \hline \begin{array}{l}\text { Items re- } \\ \text { quired for } \\ \text { operation }\end{array} & \begin{array}{l}\text { None in particular, because the } \\ \text { RAM provided as standard in } \\ \text { the CPU is used. }\end{array} & \begin{array}{l}\text { With the FP2-C2L and FP2-C2, } \\ \text { an optional memory unit and } \\ \text { ROM } \\ \text { The FP2-C2P and FP2-C3P } \\ \text { are built into the FROM. }\end{array} & \begin{array}{l}\text { FP2-C2P or FP2-C3P and IC } \\ \text { memory card with the program } \\ \text { written to it. }\end{array} \\ \hline \begin{array}{l}\text { Processing } \\ \text { in the CPU }\end{array} & \begin{array}{l}\text { Program in the RAM is executed } \\ \text { when the RUN mode is ac- } \\ \text { cessed. }\end{array} & \begin{array}{l}\text { When the power supply is } \\ \text { turned on, the program in the } \\ \text { ROM is sent to the RAM, and } \\ \text { the program in the RAM is exe- } \\ \text { cuted. }\end{array} & \begin{array}{l}\text { When the power supply is } \\ \text { turned on, the program in the IC } \\ \text { memory card is sent to the } \\ \text { RAM, and the program in the } \\ \text { RAM is executed. }\end{array} \\ \hline \begin{array}{l}\text { Contents of } \\ \text { memory } \\ \text { backed up } \\ \text { by battery } \\ \text { in the CPU } \\ \text { unit }\end{array} & \begin{array}{l}\text { Programs } \\ \text { System registers } \\ \text { Hold-type data of operation } \\ \text { memory } \\ \text { Comment data } \\ \text { (FP2-C2L, FP2-C2 only) }\end{array} & \begin{array}{l}\text { Hold-type data of operation } \\ \text { memory } \\ \text { Comment data } \\ \text { (FP2-C2L, FP2-C2 only) }\end{array} & \begin{array}{l}\text { Hold-type data of operation } \\ \text { memory }\end{array} \\ \hline \text { Maintenance } & \begin{array}{l}\text { Backup battery needs to be re- } \\ \text { placed. }\end{array} & \begin{array}{l}\text { If the program is in the operation } \\ \text { memory and does not use the } \\ \text { hold-type memory, operation is } \\ \text { possible without a battery. }\end{array} & \begin{array}{l}\text { If the program is in the operation } \\ \text { memory and does not use the } \\ \text { hold-type memory, operation is } \\ \text { possible without a battery. }\end{array} \\ \begin{array}{ll}\text { With AIC52000, periodic charg- }\end{array} \\ \text { ing or replacement is necessary. } \\ \text { Charging is done by inserting it } \\ \text { in the CPU. } \\ \text { With AFP2209, the replacement } \\ \text { of memory backup battery is } \\ \text { necessary. }\end{array}\right\}$

6.5.2 Retaining Data If the Power Fails

Operation Memory Backup

Of the internal relays, data registers and other operation memories, data specified as hold-type data in the system registers is backed up by the backup battery.

Setting the Alarm Battery Error

Normally, if a problem occurs with the backup battery, the "BATT." and "ERROR" LEDs on the front panel of the CPU light, to warn of a battery error.

During ROM operation, and when no operation memory backup is required, the alarm battery error can be set to "off". If this setting is entered, the "BATT." and "ERROR" LEDs do not light.

Method

The FPWIN GR tool software is used.

Procedure:

1. On the "Option" menu, select "PLC Configuration...".

The "PLC Configuration" window is opened.

2. Open the "Initial Switch" tab.

3. Delete the check from the "Alarm battery error" check box.

Click on "OK" to close the window.
4. The data is downloaded to the PLC.

Download to PLC. Sure?

6.5 FP2SH Operation

6.5.3 Comment Function

The FP2SH is equipped with a function that allows program comments (I/O comments, block comments, remarks) to be stored.

Type	FP2-C2L, FP2-C2	FP2-C2P, FP2-C3P
Storage memory	Internal SRAM	Internal FROM
Storage capacity	128 KB	512 KB
Backup	Backup required	Backup not required

The "Download to PLC" function in the FPWIN GR can be used to write programs and comments. Check to make sure that a check mark has been placed by "Program and Comment" under "Program Access Mode" on the "EPWIN_GR Configuration..." menu of the FPWIN GR.

The "Download to PLC" function in the FPWIN GR can be used to automatically store programs in the FPWIN GR to the internal RAM, and to automatically store comments to the comment memory.

Selecting the "Upload from PLC" function lets you load programs in the internal RAM and data in the comment memory into the FPWIN GR.

6.6 FP2SH RAM Operation

6.6.1 RAM Operation Method

Check to make sure the DIP switches on the back of the CPU have been set to the RAM operation side (SW2 is off).

```
CPU rear side
```


Procedure:

1. Use the tool software to write programs and comments. When doing this, programs are stored in the internal RAM in the FP2SH, and comments are stored in the internal RAM if the FP2-C2 is being used, and in the internal FROM if the FP2-C2P or FP2-C3P is being used.
2. RAM operation begins when the PLC is switched to the RUN mode.

6.6 FP2SH RAM Operation

6.6.2 Precautions When Operating the RAM

All contents written to the RAM are retained by the backup battery. Please pay close attention to the service life of the backup battery.

Note

It is recommended to save the programs and data within the CPU in a PC in case that it requires time for the replacement.

6.7 FP2SH ROM Operation

6.7.1 ROM Operation Function

The FP2SH is equipped with a function that causes programs, or programs and data, to be stored in a ROM (FROM or EPROM) that does not require backing up. This function also causes operations to be executed based on the contents of that ROM.

Type	FP2-C2L, FP2-C2	FP2-C2P, FP2-C3P
Storage memory	FROM or EPROM (optional)	Internal FROM
Remark	Memory unit (AFP2208 or FP2-EM7) With the memory unit (FP2-EM7), the master memory (AFP5208) or memory (AFP2509) is required.	FROM is not detachable.

(1) The "Download to PLC" function in the FPWIN GR can be used to write programs and comments.
In both cases, programs are stored in the internal RAM of the FP2SH.
If the FP2-C2 or FP2-C2L is being used, comments are stored in the internal
SRAM. They are not written to the memory unit (AFP2208 or FP2-EM7).
If the FP2-C2P or FP2-C3P is being used, comments are stored in the comment memory of internal F-ROM.
(2) Programs and data in the internal RAM of the FP2SH are transferred to the user ROM with the "RAM \rightarrow ROM transfer" function in the FPWIN GR.
(3) Programs and data in the user ROM are transferred to the internal RAM of the FP2SH with the "ROM \rightarrow RAM transfer" function in the FPWIN GR.
(4) If the power supply is turned on with DIP switch SW2 set to "on" (SW4: off), programs and data stored in the user ROM are automatically sent to the internal RAM in the FP2SH.

6.7 FP2SH ROM Operation

6.7.2 ROM Operation Method

Preparation

Turn off the power supply and detach the CPU.
If using the FP2-C2, insert the expansion memory unit (FP2-EM7) into the CPU, and install the master memory (AFP5208) or the memory (AFP5209) containing the programs.

Procedure:

1. Set the DIP switches on the back of the CPU to ROM operation (SW2: on, SW4: off).

2. Return the CPU to its original position on the backplane. When the power supply is turned on, the contents of the ROM will be transferred to the internal RAM.

Note
Be careful when switching the DIP switches on the back of the CPU. When the power supply is turned on, any contents stored in the RAM up to that point will be lost.

6.7.3 Precautions When Operating the ROM

Precautions Before Turning On the Power Supply

At the point when the ROM is installed, be aware that operation differs as described below, depending on the setting of the DIP switches on the back of the CPU.

If the power supply is turned on when DIP switch SW2 is on and SW4 is off:

When the power supply is turned on, the contents of the memory (ROM) are automatically transferred to the internal RAM and written there. Be aware that the previous contents of the RAM will be lost at that point.

If the power supply is turned on when DIP switch SW2 is off:
Even if the memory (ROM) is installed, the contents of the internal RAM can be read using the programming tools.

Consequently, to confirm the contents of the memory (ROM), the contents of the ROM should be sent to the internal RAM.
To continue using ROM operation, turn off the power supply, and set DIP switch SW2 to the "on" position and SW4 to the "off" position. Then turn the power supply on again.

6.7 FP2SH ROM Operation

6.7.4 Checking the ROM Contents While Using RAM Operation

When the DIP switches on the back of the CPU have been set to the RAM operation side, the CPU reads the contents of the internal RAM in that state. To check the contents (programs) of the ROM, use the procedure described below to send the data to the RAM.

Preparation

Set the CPU in the PROG. mode.

Procedure:

1. Select "Online Edit Mode" on the "Online" menu.

The system goes online, and online monitoring begins automatically. The $\hat{\theta}$ icon on the tool bar can also be used to do this.
2. Select "ROM \& RAM service..." on the "Tool" menu.

The "ROM \& RAM Service" window opens.
ROM\&RAM Service - Untitle2 x

3. The "ROM \rightarrow RAM" is executed.

Select "ROM \rightarrow RAM" and click on the "Execute" button.
The contents of the ROM are sent to the internal RAM.

6.7.5 Sending Data from the RAM to the FROM

The "RAM \rightarrow ROM Transfer" function in the FPWIN GR is used to send programs and data in the CPU to the ROM. The data range can be specified as any of the following fields: WL, WR, DT, FL, SV, EV, and LD.

CPU rear side

Preparation

Set the CPU in the PROG. mode.

Procedure:

1. Select "Online Edit Mode" on the "Online" menu.

The system goes online, and online monitoring begins automatically. The $\hat{\theta}$ icon on the tool bar can also be used to do this.
2. Select "ROM \& RAM service..." on the "Tool" menu.

* next page

6.7 FP2SH ROM Operation

The "ROM \& RAM Service" window opens.
ROMRRAM Service - Untitle? $\quad x$

(c) ROM \rightarrow RAM	Execute
C ROM <-RAM	Close
Transfer the program, system register, etc. stored in the ROM or IC card into the internal RAM of PLC.	Help

3. Select "ROM \leftarrow RAM" and press the "Data" button.

ROM\&RAM Service - Untitle2	
C ROM \rightarrow RAM	Execute
C ROM <-RAM	Close
Transfer the program, system register, etc. stored in the internal RAM of PLC	Data
	Help

The "Data Register Range Setup" window opens.

4. Select the data and specify the range.

Clicking on the check box in front of the data type specifies whether or not that data can be sent. Data marked with a check mark can be sent.
To specify the range, double-click on the list.

Storage Capacity of User ROM

The potential storage capacity of user ROM is:
Number of program step
Fixed value (2k words)

+ Data capacity
Total number of words
The largest total value of the above is 128 k words.

Precautions for Comment Storage

Editing of the program cannot be done during ROM operation. Transfer the data after set the DIP switches SW2 to off.

6.7.6 Writing Data to the ROM (AFP5209) (only the FP2-C2 can be installed)

The master memory is a flash ROM, and data can be written to it when it is installed in the CPU. However, data can only be written when the memory is an EPROM and when a commercially available ROM writer is used.

Procedure of Writing to Memory (AFP5209) Using Master Memory (AFP5208)

1. Turn the power off and install the expansion memory unit (FP2-EM7) installed with the master memory (AFP5208) to CPU. Turn off the DIP switches SW2 of CPU.
2. Verify that the PROG. mode has activated and turn the power on.
3. Using the "RAM \rightarrow ROM" function of the FPWIN GR tool software, transfer the contents of the internal RAM to master memory.
4. Turn the power off and detach the master memory from the CPU. Attach it to the commercially available ROM writer.
5. Transfer the contents of master memory to the commercially available ROM writer.
The ROM writer settings should be specified as those for the M27C2001 (SGS-TOMSON).
6. Remove the master memory (AFP5208), install the memory (AFP5209), and write the data. The ROM writer settings should be specified as those for the M27C2001 (SGS-TOMSON).

- next page

6.7 FP2SH ROM Operation

Notes

- Refer to the commercially available ROM writer manual regarding the ROM IC type setting and writing method. If a passwords is on the CPU, it is possible to create a password for master memory.
- When writing the contents of the FP2SH internal RAM to master memory, be sure to verify that the DIP switches SW2 is off position before turning the power on.

1) The above explanation describes the case where the memory unit is used in combination with F-ROM and EP-ROM. As the nonvolatile memory has been implemented in the memory unit (Model number AFP2208), a commercial ROM writer cannot be used for writing.
2) The parts for the optional memory to be used differ depending on FP2 or FP2SH.

6.7.7 Writing Data to the ROM: Using the FPWIN GR

With this method, programs are sent directly from the personal computer (FPWIN GR tool software) to the ROM writer, and are written to the ROM. With the FP2SH, this method can be used only when the expansion memory unit (FP2-EM7) is used in combination with the FP2-C2 CPU.

Preparation

Connect the personal computer and the ROM writer.

Procedure:

1. On the "Tool" menu of the FPWIN GR tool software, select "ROM Writer" to display the dialog box for the ROM writer.
2. Specify "Write" as the "Operation Method" and "Serial Port" as the "Input/Output Destination", and click on "Execute".
The program is sent to the ROM writer.

In the ROM writer settings, the flow control (X-on/off) should be turned on.

6.7 FP2SH ROM Operation

3. Install the memory in the commercially available ROM writer and write the data.
The ROM writer settings should be specified as those for the M27C2001 (SGS-TOMSON).

Notes

- Refer to the commercially available ROM writer manual regarding the ROM IC type setting and writing method.
- It is possible to create a password for master memory.

6.8 FP2SH IC Memory Card Operation (for FP2-C2P/ FP2-C3P)

6.8.1 Operating Using the IC Memory Card

IC memory cards can be used to back up programs and as operation memories, but they can also be used for operation, with programs that have been written to the card.

Writing Programs to the Card

The "Copy File" menu in the tool software is used to write programs to a card. When this is used to transfer programs automatically, a file created ahead of time must be converted to the file to be used for automatic transfer.
The converted file can be confirmed in the software, under the file name "Autoexec.spg".

If the card is an SRAM type, the "ROM \& RAM service..." menu and "İC Card Service" menu can also be used.

6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P)

Executing Programs

There are two ways to execute programs written on IC memory cards, described below.
(1) Programs are automatically transferred when the power supply is turned on. If the power supply is turned on when the DIP switches on the back of the CPU are set so that both SW2 and SW4 are on, the "Autoexec.spg" file stored in the IC memory card is sent to the internal RAM. When the mode is switched to RUN, operation begins in accordance with the contents of that file.

```
FP2SH (FP2-C2P, FP2-C3P)
```


(2) Sending programs from the "ROM \& RAM service..." menu

If the power supply is turned on when the DIP switches on the back of the CPU are set so that SW2 is off and SW4 is on, executing the "ROM \rightarrow RAM" operation causes the "Autoexec.spg" file stored in the IC memory card to be sent to the internal RAM. When the mode is switched to RUN, operation begins in accordance with the contents of that file.

Before the "ROM \rightarrow RAM" menu is executed, any contents loaded with the tool become the contents of the internal RAM.

6.8.2 Creating Files for Automatically Run Programs

In order to automatically execute programs stored on the card when the power supply is turned on, the following procedure must be used to convert the programs to programs that will run automatically.
Procedure:

1. On the FPWIN GR tool software menu, select the following: "Tool" э "İC Card Service" э "Auto-Run File Conversion...".
2. Select the program to be started up automatically.

3. Select the destination to which the program is to be stored after it is converted.

4. An auto run file is created, and a confirmation message displayed.
```
FPWIN GR
区
```

-

Auto-Run file (AUTOEXEC.SPG) was created in the specified folder. 0 OK

The auto run file created in this procedure can be read using the various IC card menus. The following shows the screen displayed for "Copy File to IC Card (Flash Memory)".

6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P)

6.8.3 How the IC Memory Card is Operated

Turn off the power supply, and remove the CPU.
Have the IC memory card ready that contains programs already written to it.
Procedure:

1. Set the DIP switches on the back of the CPU for IC memory card operation (SW2: on, SW4: on).
2. Install the CPU back in its original position on the backplane.
If the power supply is switched on in the RUN mode, the program on the IC memory card called "Autoexec.spg" is sent to the internal RAM. The program is transferred at the point when the power supply is turned on.

If the power supply is turned on with the "Autoexec.spg" file on the IC memory card, all contents of the RAM up to that point are lost.

6.8.4 Transferring Data From the RAM to the IC Memory Card

The "RAM \rightarrow ROM Transfer" function in the FPWIN GR tool software is used to send programs and data in the CPU to an SRAM type IC memory card. The data range can be specified as any of the following fields: WL, WR, DT, FL, SV, EV, and LD. (DIP switch settings: SW2: off, SW4: on)
FP2SH (FP2-C2P, FP2-C3P)

Note
This method can only be used with an SRAM type IC memory card.

6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P)

Chapter 7

IC Memory Card

7.1 Using the IC Memory Card

7.1.1 Types of IC Memory Cards

There are two types of IC memory cards, an SRAM type and an FROM type. The user can select the appropriate type for the application at hand.

Type	Memory capacity	Part number
FROM type	2 MB	AIC50020
SRAM type	2 MB	AIC52000
		AFP2209

FROM type

No battery backup is required, so this type is ideal for saving programs.
Programs are written using the "Copy File to IC Card..." function in the FPWIN GR.
When used as an expansion memory, this type is a read-only card. The "Data Editor" is used to write data.

SRAM type

This is ideal for use in expanding the data memory area. When used as an expansion memory, the F13(ICWT) instruction and F12(ICRD) instruction of the sequence program are used to write and read data automatically.

About AFP2209

An interchangeable lithium battery is used.
When you use for the first time, install the battery included.
The battery voltage of IC card is detected only once when the CPU unit is powered on.
An error will not be determined if the battery is replaced during power-on.

About AIC52000

An internal secondary battery is provided for backup purposes.
The data on the SRAM type IC memory card is backed up by a chargeable secondary battery.
When the card is first inserted in the CPU and the power supply is turned on, the battery is not charged, so an error reading "IC card battery error" occurs. Before using the card for the first time, always insert it in the CPU and leave it for at least 24 hours before turning on the power supply. (This fully charges the battery.)

Memory backup time (Ambient temperature of $25{ }^{\circ} \mathrm{C}$)

Model No.	Memory retention time	The battery life
AFP2209	Approx. 3 years or more	
AIC52000	3 months	If operated at $25^{\circ} \mathrm{C}$ for 12 hours a day with the power supply off, : Approx. 10 years The service life is shorter at high temperatures, or if the power supply is left off or long periods of time.

7.1 Using the IC Memory Card

7.1.2 Using the IC Memory Card

The IC memory card is available as an optional memory for the FP2-C2P/FP2-C3P. (It cannot be used with the FP2-C2.)
IC memory cards can be used for two types of applications: saving programs and expanding the data memory area. Also, a single IC memory card can be used in the following three ways:

Only for saving programs
Only for expanding the data memory area
For both saving programs and expanding the data memory area

Using the Card to Save Programs

Sequence programs can be written to IC memory cards and saved on them. The IC memory card with the program written to it is then used as a program memory.

If the FPWIN GR or a similar tool is used to change the file name to "Autoexec.spg", as an auto run file, and the file is copied or the program is transferred, and if the DIP switches on the CPU are set so that SW2 and SW4 are both on, the program can be automatically transferred to the RAM at the same time that the power supply is turned on.
If the F14 (PRGRD) instruction is executed in the RUN mode, a program can be substituted for another program in any desired file.
If an SRAM type of IC memory card is being used, the "ROM \& RAM service" in the FPWIN GR can be used to copy the contents of the RAM in the CPU to the IC memory card.

If the card is being used as a program memory, there are four ways to read programs from the card, described below:
Programs can be automatically read when the power supply is turned on.
Programs can be read using the "ROM \& RAM service" menu on the FPWIN GR.
Programs can be read using the "Upload Program from IC Card..." menu on the FPWIN GR.
The F14 (PRGRD) instruction of the sequence program can be used to read programs.

Using the Card to Expand the Data Memory Area

Data written to data registers and other destinations is written to the IC memory card. When the card is used in this way, the IC memory card can be used as an expanded memory area that lets data be written and read using the sequence program.
Data is written using the F13 (ICWT) instruction of the sequence program, and is read from the IC memory card using the F12 (ICRD) instruction.
The FROM type of card can only be used for reading data.

How the IC memory card is used

7.2 Formatting and Erasing

7.2.1 Program Memory Field and Expanded Memory Field

The area in which sequence programs are stored is called the "program field", and the area used to expand the data memory is called the "expanded memory field". The IC memory card must be divided into separate fields, depending on how it is being used.

Using the Card Only as a Program Memory

When using the card only to save programs, the entire IC memory card must be designated as a "program memory field".

FROM type
Procedure:

1. On the "Tool" menu, choose "IC Card Service" and then "Erase IC Card..." to erase the entire field.
2. On the "Tool" menu, select "IC Card Service" and then "Copy File to IC Card..." and set the format size to the maximum size. Then copy the program from a floppy disk or the hard disk, to the IC memory card.
SRAM type
Procedure:
On the "Tool" menu, choose "IC Card Service" and then "Format IC Card..." to format the entire field.

Using the Card Only as a Data Memory Area

When using the card only to expand the data memory area, the entire IC memory card must be designated as an "expanded memory field".

FROM type
Procedure:

1. On the "Tool" menu, choose "IC Card Service" and then "Erase IC Card..." to erase the entire field.
2. Using the "Data Editor" supplied with the FPWIN GR, run the "Download to PLC" function, and transfer the data.

SRAM type
Procedure:
On the "Tool" menu, choose "İC Card Service" and then "Erase IC Card..." to erase the entire field.

Using Different Sections of the Card as a Program Memory Field and Expanded Memory Field

Any desired settings may be entered for the field to be formatted. Of the entire field, any part of the field not formatted (program memory field) is used to expand the memory field.
FROM type
Procedure:

1. On the "Tool" menu, choose " $\mathfrak{l C}$ Card Service" and then "Erase IC Card..." to erase the entire field.
2. On the "Tool" menu, select "IC Card Service" and then "Copy File to IC Card..." to specify the format size. Then copy the program from a floppy disk or the hard disk, to the IC memory card.
3. Boot the "Data Editor".
4. In the "Edit IC Memory Card Data" mode, create a file, or open an existing file.
5. On the "File" menu, select "Download to PLC", and transfer the data.
SRAM type
Procedure:
On the "Tool" menu, choose "IIC Card Service" and then "Format IC Card...". Specify the necessary segment as a program memory, and format it.

7.2 Formatting and Erasing

7.2.2 Procedure for Formatting the IC Memory Card

Formatting an FROM type

When using this type, formatting is done at the same time that the program on the disk is copied to the IC memory card, with the FPWIN GR.

Procedure:

1. Boot the "Copy File to IC Card..." function.

On the "Iool" menu, select "IC Card Service" and then "Copy File to IC Card...". First, the "Specify Format" window opens.

next page
2. Specifying and running the format size

Press the * button next to "Format Size" to select the size.

IC Card AI Capacily - Formal Size = Extended Memory Capacily
NOTICE: Thit operation erases al dota in IC card.
Execute Close Help
Next, click on the "Execute" button to open the "Select File" window.

3. Selecting the file to be copied

Select the file to be copied to the IC memory card, and click on "OK".
The IC memory card is formatted, and the file is written to the card.

7.2 Formatting and Erasing

Formatting the SRAM type

With this type of card, the IC memory card must be formatted before the program is saved to it, and a "program memory field" must be assured to which the program will be saved. This section explains how this is done using the FPWIN GR.

Procedure:

1. Booting the "Eormat IC Card..." function.

On the "Tool" menu, select "IC Card Service" and then "Format IC Card...". The "Format IC Card" window opens.

next page
2. Specifying and running the format size Press the - button next to "Format Size" to select the size.

Next, click on the "Execute" button to format the card at the specified size.

7.2.3 Procedure for Erasing the IC Memory Card

For both the SRAM type and the FROM type, before the IC memory card can be used as an expanded memory, any data already on the card must be erased, and an area must be assured as the "expanded memory field". The procedure is described here using the FPWIN GR.

Procedure:

1. Booting the "Erase IC Card..." function

On the "Tool" menu, select "IC Card Service" and then "Erase IC Card...". The "Erase IC Card" window opens.

2. Erasing the card

Clicking on the "Execute" button starts erasing the data from the card. It takes approximately 1 minute to erase all the data.
*Once erasing the data starts, the "IC memory card access LED" on the CPU unit lights up.
The LED is turned off on completion of erasing.

7.2.4 Data Storage Capacity of IC Memory Card

When storing a program or data in the IC memory card, the data storage capacity is as follows.

Program file (*.fp, *.SPG)

+ FAT area (see note)
Total number of bytes
Keep the total number of bytes for the files given above less than the format capacity.

Note

The I/O comment capacity changes according to the size of the statements.
FAT area:
256KB format $=5.5 \mathrm{~KB}$
512 KB format $=6 \mathrm{~KB}$
1 MB format $=9.5 \mathrm{~KB}$
2 MB format $=14.5 \mathrm{~KB}$

7.3 For Use as Program Memory

7.3.1 Writing the Program

By saving the program to the IC memory card, it is simple to create a backup or transfer it to another CPU.

Furthermore, by saving more than one program, switching between the programs can be done as necessary.

Writing Programs

There are three ways to write programs to the IC memory card:
Use the "Copy File to IC Card..." function in the FPWIN GR to write a program saved on a disk directly to the IC memory card. All types of cards can be used for this.

Write programs created with the FPWIN GR directly to the IC memory card. This can only be done with SRAM types. (*)
Write programs in the RAM of the CPU to the IC memory card. This can only be done with SRAM types. (*)
*When writing programs to the FROM type of card, the program should be saved to a disk before using the "Copy File to IC Card..." function of the FPWIN GR to write the program to the IC memory card.

7.3 For Use as Program Memory

Method 1: Use the "Copy File to IC Card..." function in the FPWIN GR, directly write the program that is saved on the disk to the IC memory card. (For all types of IC memory card)

Procedure:

For FROM types

See section 7.2.2, "Procedure for Formatting the IC Memory Card".

For SRAM types

1. Boot the "Copy File to IC Card..." function. On the "Tool" menu, select "IC Card Service" and then "Copy File to IC Card...".

The "Select File" window opens.

* next page

2. Selecting the file to be copied

Select the file to be copied to the IC memory card, and click on "OK".
Writing of the file to the IC memory card begins, and the "List of File Copy Results" is displayed.
Method 2: Directly write the program that is made by the FPWIN GR to the IC memory card. (For the SRAM type IC memory card)

Procedure:

1. Booting the "Download Program to IC Card..." function On the "Tool" menu, select "IC Card Service" and then "Download Program to IC Card...".

The "Save Program to IC Card" window opens.

7.3 For Use as Program Memory

2. Setting the file information

Enter the "File Name" (name of the file to which the program is to be written), the "Title", and the "Author" (name of the person creating the file).
The file name must be within 8 characters.
Programs can be written even if the "Title" and the "Author" are not specified.
Check to make sure the necessary items have been entered, and click on the "Execute" button.
Writing of the program to the IC memory card begins.

To have the program being sent executed automatically, select "Auto-Run File (Without Comment)" for the "Type" of "File Information".

Method 3: Write a program on the RAM of the CPU into the IC memory card. (For the SRAM type IC memory card)

By performing the following procedures, the data on the RAM of the CPU is written to the IC memory card and named "Autoexec.spg".

Procedure:

1. Booting the "ROM \& RAM service..." function On the "Tool" menu, select "ROM \& RAM service...".

bol View)I	
Debug	Iool Option Window Help
A A Pron	Change PLC Iype...
${ }^{\text {Remark }}$ 「	IC Card Service *
Disabled	ROM Writer...
	ROM \& RAM service.
	Set PLC Password...
	Set PLC Date \& Time...
	Defragmenting General Memory
	Screen Capture

The "ROM \& RAM Service" window opens.
ROM\&RAM Service - Untitle2 x

2. Executing the "ROM \leftarrow RAM" transfer function

Select "ROM \leftarrow RAM", and click on the "Execute" button.

7.3 For Use as Program Memory

7.3.2 Reading the Program

There are four methods of reading the program saved in the IC memory card.
Read the program on the IC memory card and directly transfer it into the internal RAM of the CPU at the same time that the power is turned on.

Use the programming tool to read the program of the IC memory card and directly transfer it into the internal RAM of the CPU.

Use the "Copy File from IC Card..." of the FPWIN GR, and select one of the programs saved in the IC memory card and read it to the FPWIN GR (memory of personal computer).
Use the F14 (PGRD) instruction to read the program from the IC memory card, and directly transfer it into the internal RAM of the CPU.

Method 1: Read the program on the IC memory card and directly transfer it into the internal RAM of the CPU at the same time that the power is turned on.
By just turning on the power of CPU, the device automatically reads the program of the IC memory card and transfers the program to the internal RAM of the CPU.

The target of automatic reading is the program named "Autoexec.spg".

Procedure:

1. While the power is turned off, set the DIP switches SW2 and SW4 on the back of the CPU to on, and set the IC memory card access enable switch to on position.

2. Turn on the CPU.

Method 2: Use the programming tool to read the program of the IC memory card and directly transfer it into the internal RAM of the CPU.
With simple operation of the programming tool, reads the program saved on the IC memory card, and transfer it to the internal RAM of the CPU.

The target of automatic reading is the program named "Autoexec.spg".

Procedure:

1. Booting the "ROM \& RAM service..." function

On the "Tool" menu, select "ROM \& RAM service..."

The "ROM \& RAM Service" window opens.
ROM\&RAM Service - Untitle? x

2. Executing the "ROM \rightarrow RAM" transfer function Select "ROM \rightarrow RAM", and click on the "Execute" button.

7.3 For Use as Program Memory

Method 3: Use the "Upload Program from IC Card..." of the FPWIN GR, and select one of the programs saved in the IC memory card and read it to the FPWIN GR (memory of personal computer).

Procedure:

1. Booting the "Upload Program from IC Card..." function On the "Tool" menu, select "IC Card Service" and then "Upload Program from IC Card...".

The "IC Card File List" is displayed.
IC Card File ListI Read Program J - Untitle1

2. Selecting the file to be read

Select the file to be read from the "IC Card File List", and click on the "Execute" button. Reading of the program begins.

Method 4: Use the F14 (PGRD) instruction to read the program from the IC memory card and directly transfer it into the internal RAM of the CPU.

By first saving the programs you desire on the IC memory card, you can use the F14 (PGRD) instruction in the program, to switch a program while in the RUN mode (while in operation).

The following details the describe the program after executing F14 (PGRD) instruction. The program will continue executing until the END instruction is executed.
The CPU enters the PROG. mode and the program is read from the IC memory card and transfer to the internal RAM of the CPU.
The CPU automatically switches to the RUN mode, and the new program executes.

I
 Example:

With F14 (PGRD) instruction, specify a saved file name by the FPWIN GR to call up the program of from IC memory card.

For the program above, the contents "STEP 1" stored in DT100 is the file name used to call up the program.
To store the program name to registers such as DT100, you can write it with alphanumeric code using F0 (MV) or F1 (DMV) instruction, or you can write it with ASCII conversion using F95 (ASC) instruction. For more details, refer to the programming manual.

- There are dangers involved when switching programs while in the RUN mode. Carefully read the section regarding the F14 (PGRD) instruction in the programming manual.
- Only files saved with the .spg extension are programs that can be read using the F14 (PGRD) instruction.

7.4 For Use as Expansion Memory

Outline of Expansion Memory

The expansion memory area is an independent area from the internal memory of the CPU that stores word data. Use the F12 (ICRD) and F13 (ICWT) instructions to read and write data to this area. Below are some of the things that you can do by using the expansion memory area.

1) As reading and writing are easily done using high-level instructions, you can use the expansion memory as external memory for the CPU.

Writing (for SRAM type)

Use the F13 (ICWT) instruction to transfer the word data stored in the data register of the CPU to the IC memory card.

```
- -FO MV , K 100, DT 9\(]\)
    [F13 ICWT, DT 9, K1, H3FFFF ]
```

With the above program, after the constant K100 is stored in DT9, F13 (ICWT) instruction is used to write one word of data (K100) from the beginning of DT9 to the address H3FFFF of the IC memory card. For more details, refer to the programming manual.
With the FROM type, the "Data Editor" is used to write programs.
IC memory card

Reading

Use the F12 (ICRD) instruction to transfer the word data stored on the IC memory card to the data register of the CPU.
$-[$ F12 ICRD , H3FFFF , K 1 , DT 7$]$

The above program reads a one word data from the address H3FFFF of the IC memory card to DT7. For more details, refer to the programming manual.

2) When dealing with many different data or other such applications, you can create a table to store the different control data and easily switch between the data according to the data type you are using.

Create a data table in the IC memory card such as outlined above, so that the data is read to the CPU every time you switch data.
When using the IC memory card as an expanded memory, the DIP switches do not need to be set, but the access enable switch should be set to "on".

Configuration of Expanded Memory Field

Fields of the IC memory card that are not formatted can be used as expanded memory field.

1) Using the entire IC memory card as expansion memory (when there is no DOS formatted field) The "Card capacity - 1" word portion can be used.
The data of one word (two bytes) can be stored in one address. As the following example calculation, in 2MB area, data of $1,048,575$ words can be stored.
$\frac{(2 \times 1048576) \text { bytes }}{2}-1=1,048,575$ words
In the expanded memory field, the addresses are numbered by word units and, regardless of the size of the formatted area, the starting address is numbered as $0(\mathrm{HO})$. For example, the addresses for 1 MB (512 k words) area are from as H 0 to H7FFFE.

d
 Example: When 1MB of SRAM type IC memory card is designated as expansion memory.

7.4 For Use as Expansion Memory

2) Using the remaining DOS formatted field

All of the remaining DOS formatted field can be used as expansion memory.

Example: When 512 kB is set as the DOS formatted field in a 1 MB card

7.5 Menus Related to Tool Software

The FPWIN GR is equipped with menus that are used for management of the IC memory card.

Reading Programs and Data Stored on IC Memory Cards "Upload Program from IC Card..."

This enables one program to be selected from among the multiple programs stored on the IC memory card, and read to the FPWIN GR.

"Copy File from IC Card..."

This reads a program or data file stored on the IC memory card, and copies it to a floppy disk (or hard disk).
When creating a copy of a file stored on the IC memory card, first copy the file stored on the IC memory card, that serves as the source file, using this menu, and then insert the new IC memory card and use "Copy File from IC Card..." to copy the data from the disk to the IC memory card.

Initializing the IC Memory Card

"Erase IC Card..."

This clears all of the contents from the IC memory card. The program field assured with the "Eormat IC Card..." function is cleared, and the entire card is used as an expanded memory field.

Management of an SRAM type of IC Memory Card
 Before using the card
 "Format IC Card..."
 The IC memory card is formatted, and a "program memory field" is assured in which programs can be saved. The remaining area assured as the "program memory field" then serves as an expanded memory area.

Writing data to the IC memory card

"Download Program to IC Card..."
Programs are written from the FPWIN GR to the IC memory card.

"Copy File to IC Card..."

The contents of a floppy disk (or hard disk) are copied to the IC memory card. This function can also be used to select multiple programs and write them to the IC memory card as a batch, all at once.

7.5 Menus Related to Tool Software

Other file management menus

"Delete File..."

This deletes programs from the IC memory card. This function can also be used to select multiple programs and delete them as a batch, all at once.

"Rename File..."

This is used to change the file name or title of a program on the IC memory card.

"Change File Attribute..."

This is used for dedicated reading of programs stored on the IC memory card, or to change the attributes of a hidden file.

Writing to an FROM Type IC Memory Card

 "Copy File to IC Card..."Programs are written to an FROM type of IC memory card by copying the contents of a floppy disk (or hard disk) to the card.
With the FROM type of IC memory card, it is not possible to update only partial sections of data, or to change file names or delete files. These functions should be carried out on the disk before the data is copied to the IC memory card.

Chapter 8

Self-Diagnostic Function and Troubleshooting

8.1 Self-Diagnostic Function

8.1.1 LED Display for Status Condition

Status Indicator LEDs on CPU

Condition	LED status							Description	Operation (Program execution) status
	RUN	PROG.	TEST	BREAK	ERROR	BATT.	ALARM		
Normal condition	on	off	off	off	off	off	off	Normal operation	Operation
	off	on	Varies	off	off	off	off	PROG. mode	Stop
	Flashes	off	Varies	off	off	off	off	Forcing on/off in RUN mode	Operation
	off	on	on	Varies	Varies	off	off	TEST operation mode (break condition)	Stop
	on	off	on	off	Varies	off	off	TEST operation mode (operating condition)	Operation
Abnormal condition	off	on	Varies	Varies	on	Varies	off	When a self-diagnostic error occurs (break condition)	Stop
	on	off	off	off	on	Varies	off	When a self-diagnostic error occurs (operating condition)	Operation
	Varies	Varies	Varies	Varies	on	on	off	When CPU backup battery error occurs	Operation
	Varies	Varies	Varies	Varies	Varies	Varies	on	When a watchdog timer error occurs	Stop
	off	Flashes	Varies	off	Varies	Varies	off	When remote I/O slave station waiting error occurs	Stop

Status Indicator of CPU

The CPU has a self-diagnostic function which identifies errors and stops operation if necessary.
When an error occurs, the status of the status indicator LEDs on the CPU vary, as shown in the table above.

8.1 Self-Diagnostic Function

8.1.2 Operation When an Error Occurs

Normally, if an error occurs, the operation stops.
There are some instances in which operation continues even if an error occurs, such as with a battery error.
The user may select whether operation is to be continued or stopped if a duplicated output error or operation error occurs, by setting the system registers. You can set the system registers for error which operation is to be continued or stopped using programming tool software (NPST-GR/FPWIN GR).

PLC Configuration (System register) Setting Menu of FPWIN GR Software

1. On the "Option" menu, select "PLC Configuration".
2. In the [PLC Configuration] Screen, select [Action on Error] tab.

Register No.	Item	Description
20	DUPLICATE OUTPUT	[DISE, ENAB]
21	I/O UNIT ERROR	[STOP, CONT]
22	INTELLIGENT UNIT ERROR	[STOP, CONT]
23	I/O VERIFY ERROR	[STOP, CONT]
24	UNUSED	
25	UNUSED	[STOP, CONT]
26	OPERATION ERROR	[STOP, CONT]
27	REMOTE I/O SLAVE LINK ERROR	[STOP, CONT]
28	I/O ERROR IN REMOTE I/O SLAVE	
29	UNUSED	[ENAB, DISA]
4	BATTERY ERROR INDICATION	[ENAB, DISA]

Allowing duplicated output

When you set the system register 20 to "ENAB", duplicated output is not regarded as an error and the PLC continues to operate.

Continuing after an operation error

When you set the system register 26 to "CONT", even if the PLC continues to operate, this is regarded as an error.
This applies to system registers 21 through 28 as well.

8.2 Troubleshooting

8.2.1 If the ERROR LED Lights

Condition

The self-diagnostic error occurs.

Procedure 1

Replace the backup battery of the CPU when the BATT. LED is on. (w section 9.1.1)

Procedure 2

Check the error code using the programming tool.
Using programming tool software (FPWIN GR)
In the ONLINE mode, select "Status Display" on the "Online" menu. At the bottom of the "STATUS DISPLAY" window, you can find the error code.

Procedure 3

Error code is 1 to 9

Condition

There is a syntax error in the program.

Operation 1

Change to PROG. mode and clear the error.

Operation 2

Execute a total-check function using programming tool software (FPWIN GR) to determine the location of the syntax error.

\author{

* next page
}

8.2 Troubleshooting

Error code is 20 or higher

Condition

A self-diagnostic error other than a syntax error has occurred.

Operation

Use the programming tool in PROG. mode to clear the error.

Using programming tool software (FPWIN GR)

Click "Clear Error" button in the "Status Display" menu described on the previous page. Error code 43 and higher can be cleared.
In the PROG. mode, the power supply can be turned off and then on again to clear the error, but all of the contents of the operation memory except hold type data are cleared.

An error can also be cleared by executing a self-diagnostic error set instruction F148 (ERR)/P148 (PERR).

When an operation error (error code 45) occurs, the address at which the error occurred is stored in special data registers DT90017 and DT90018. If this happens, monitor the address at which the error occurred before cancelling the error.

8.2.2 If the ALARM LED Lights

Condition

The system watchdog timer has been activated and the operation of PLC has been stopped.

Procedure 1

Set the mode selector of CPU from RUN to PROG. mode and turn the power off and then on.

If the RUN and ALARM LED is turned on again, there is probably an abnormality in the CPU. Please contact your dealer.
If the ERROR LED is turned on, go to section 8.2.1.

Procedure 2

Set the mode selector from PROG. to RUN mode.
If the ALARM LED is turned on, the program execution time is too long. Check the program, referring the following:
Check if instructions such as JP or LOOP are programmed in such a way that a scan can never finish.
Check that interrupt instructions are executed in succession.

Procedure 3

If there is nothing wrong with programs, there may be a problem with the ambient environment.
Check the wirings including the grounding link.
Especially, check if the RS232C wiring is not close to power lines and it has been shielded.

8.2.3 If the LED (POWER) of the Power Supply Unit Does Not Light

Procedure 1

Check wiring of power supply unit.

Procedure 2

Check if the output of the power supply unit is in the range of the rating.
If the capacity of internally supplied power " 5 V " is insufficient, investigate different unit combinations.

Procedure 3

Disconnect the power supply wiring to the other devices if the power supplied to the power supply unit is shared with them.
If the LED on the power supply unit turn on at this moment, prepare another power supply for other devices.

8.2 Troubleshooting

8.2.4 If Outputting Does Not Occur as Desired

Proceed from the check of the output side to the check of the input side.

Check of output condition 1

Output indicator LEDs are on

Procedure 1

Check the wiring of the loads.

Procedure 2

Check if the power is properly supplied to the loads.
If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.
If the power is not supplied to the load, there is probably an abnormality in the output section. Please contact your dealer.

Check of output condition 2

Output indicator LEDs are off

Procedure 1

Monitor the output condition using a programming tool.
If the output monitored is turned on, there is probably a duplicated output error.

Procedure 2

Forcing on the output using forcing I/O function.
If the output indicator LED is turned on, go to input condition check.
If the output indicator LED remains off, there is probably an abnormality in the output unit. Please contact your dealer.

Check of input condition 1

Input indicator LEDs are off

Procedure 1

Check the wiring of the input devices.

Procedure 2

Check that the power is properly supplied to the input terminals.
If the power is properly supplied to the input terminal, there is probably an abnormality in the input unit. Please contact your dealer.

If the power is not properly supplied to the input terminal, there is probably an abnormality in the input device or input power supply. Check the input device and input power supply.

[^2]Phone: 800.894.0412-Fax: 888.723.4773-Web: www.clrwtr.com - Email: info@clrwtr.com

Check of input condition 2

Input indicator LEDs are on

Procedure

Monitor the input condition using a programming tool.
If the input monitored is off, there is probably an abnormality with the input unit. Please contact your dealer.
If the input monitored is on, check the leakage current at the input devices (e.g., twowire type sensor) and check the program again, referring the following:
Check for the duplicated use of output and for the output using the high-level instruction.
Check the program flow when a control instruction such as MC or JP is used.
Check the settings of the I/O allocation.

8.2.5 If a Communication Error Message Appears

Procedure 1

Make sure the computer and PLC are properly connected.

Procedure 2

Check if the baud rate and data length settings of the PLC and the computer are the same.

Personal computer section setting

1. On the "Option" menu, select "Communication Settings".
2. Select a baud rate "9600 or 19200 ".

PLC section setting

Use the SW1 of DIP switches (operation condition switches) to enter the setting for the PLC.
The SW1 "off" position is the system register setting.
Depending on the personal computer, there are times when baud rate of 19,200bps or greater are not supported. If problems occur, set both the personal computer and PLC to $9,600 \mathrm{bps}$. If SW1 is on, the baud rate for the FP2/FP2SH PLC is fixed to $9,600 \mathrm{bps}$.

8.2 Troubleshooting

8.2.6 If a Protect Error Message Appears

When Optional User ROM is Installed in the CPU

The program of the internal RAM cannot be modified using the programming tool and a "protect error" occurs.

Operation 1

Turn off the power supply of the PLC, remove the CPU and set the SW2 of DIP switches (operation condition switches) on CPU to the "off (internal RAM)" position.

Operation 2

Modify the program of the internal RAM using the programming tool.

Operation 3

Save the modified program to the memory or master memory and start operation again.

If the Program Memory is Protected
 Operation

Turn off the power of the PLC, remove the CPU and set the SW3 of DIP switches (operation condition switches) on CPU to "off (write enabled)" position.

When a Password Function is Used

Operation

1. On the "Online" menu, select "Online Edit Mode".
2. On the "Tool" menu, select "Set PLC Password".
3. Enter the password and select "unprotect".

Chapter 9

Maintenance

9.1 Replacement of Spare Parts

9.1.1 Backup Battery

Lifetime of Backup Battery

The life of the backup battery will eventually expire and therefore it is important to replace it with a new battery periodically. The battery lifetime will differ depending on the operating conditions (i.e., ambient temperature) and the type of expansion memory unit. Refer to the table below for a guide as to when to replace the battery.

Expansion memory unit type installed	Battery lifetime (ambient temperature: $55^{\circ} \mathbf{C} / 131^{\circ} \mathrm{F}$)
No expansion memory unit	For FP2: 10,000 hours or more (typical lifetime in actual use: approx. 13,000 hours) For FP2SH: 3,500 hours or more (typical lifetime in actual use: approx. 31,000 hours)
FP2-EM1 (Model No. AFP2201)	For FP2: 9,000 hours or more (typical lifetime in actual use: approx. 12,000 hours)
FP2-EM2 (Model No. AFP2202) FP2-EM3 (Model No. AFP2203)	For FP2: 8,000 hours or more (typical lifetime in actual use: approx. 12,000 hours)
FP2-EM6 (Model No. AFP2206)	For FP2: 8,500 hours or more (typical lifetime in actual use: approx. 12,500 hours)
FP2-EM7 (Model No. AFP2209)	For FP2: 10,000 hours or more (typical lifetime in actual use: approx. 13,000 hours) For FP2SH: 3,500 hours or more (typical lifetime in actual use: approx. 31,000 hours)
Model No. AFP2208	For FP2SH: 3,500 hours or more (typical lifetime in actual use: approx. 31,000 hours)

A drop in the battery voltage can be confirmed with special internal relays R9005 and R9006, the ERROR LED and BATT. LED. Be sure to replace new battery within a week.

IC memory card	Battery lifetime (Ambient temperature of $25^{\circ} \mathrm{C}$)
	FP2SH
AFP2209	Approx 3 years or more

The battery voltage of IC card is detected only once when the CPU unit is powered on. An error will not be determined if the battery is replaced during power-on.
If the battery voltage has dropped, the ERROR LED lights, R9101 or R9102 on, and error code K55 or K54 is stored in special data register DT90000. Error codes can be confirmed using programming tools.
Backup battery

PLC Type	Part number	Description	
FP2 CPU unit	AFC8801	Lithium battery CR2450 or equivalent	-
FP2SH CPU unit	AFP8801	-	Common to FP3 and FP10SH
IC memory card	AFP2806	-	BR-1225A/B

9.1 Replacement of Spare Parts

Notes

- During RAM operation, save the program in the CPU onto disk using programming tool software (FPWIN GR).
- Never throw batteries into a fire, disassemble or charge the battery in order to prevent accidents such as bursting, fire or heat generation.

Replacement Method of Backup Battery

Preparation

Leave the unit on for more than 30 minutes, then turn the power off and remove the CPU. It is recommended to save the programs and data within the CPU in a PC in case that it requires time for the replacement.

After turning the power off, be sure to finish replacing the battery within 10 minutes.

Procedure for FP2

1. Use an insulated flat-head screwdriver and lift up the battery.
During this operation, be careful not to damage printed circuit board, battery holder, or other internal components.
2. Pull out the battery in the direction shown by the arrows below (pushing from the rear).
3. Holding the positive pole of the battery upwards, press the new battery into the battery holder underneath the $(+)$ terminal.

Procedure for FP2SH

1. Lift up the lead wire.

Make sure the lead wire next to the connector insertion area, which is also the battery holder, is lifted out of the hole that secures it in place.
2. Lift up the battery.

3. Pull the connector off.

Pull the connector straight off, so the terminals do not bend.
4. Install the new battery by reversing the above procedure.
Make sure the connector terminals are positioned in the correct directions.

9.1 Replacement of Spare Parts

Procedure for AFP2209:

Preparation
Backup the data saved in the IC memory card.
Note: The saved data is overwritten when replacing the battery.

1. Move to the lock switch to the RELEASE position (toward the battery holder).

2. Remove the battery holder.

3. Place the battery in the battery holder with the side with a ' + ' sign facing up.

4. Insert the battery holder with the battery all the way seated in the IC memory card.

* The lock swich is automatically back to the LOCK position when removing the battery holder.
In this state, insert the battery holder all the way seated.

Confirm the lock switch is in the LOCK position.
5. Write the backup data in the IC memory card.

9.1.2 Removable Terminal Block for Input and Output Units

Removable Terminal Block

The removable terminal block is used on the terminal block type input and output units. The removable terminal block can be removed while it is still wired. Therefore, if a malfunction or other error occurs, replacement of the unit and other maintenance procedures can be carried out speedily.

Replacement of Removable Terminal Block

Removal procedure
The whole removable terminal block for terminal block type input and output units can be removed by lowering the "OPEN" knob (release lever) on the top of the terminal block. Used at the time of wiring.

Installation procedure

To replace the terminal block, press it into its original position until it is completely seated and press the terminal block lock button on the bottom of the unit to secure the terminal block in place. Then verify that the terminal block is properly secured and cannot be removed.

9.2 Preventive Maintenance

9.2 Preventive Maintenance

Although the FP2/FP2SH system has been designed in such a way to minimize maintenance and offer troublefree operation, several maintenance aspects should be taken into consideration.

If preventive maintenance is performed periodically, you will minimize the possibility of system malfunctions.

Inspection item	Inspection description	Basis of judgement	Reference
Power supply unit	Check POWER LED on power supply unit	Normal if on	Section 2.7
	Power supply unit	Periodic replacement (20,000 hours of operation)	
CPU display	Check RUN LED	On in RUN state	Section 2.2, 2.4, and 8.1
	Check ERROR LED	Normal if off	
	Check ALARM LED	Normal if off	
	Check BATT. LED	Normal if off	
Input/output unit display	Check input/output display LED	Normal if "light" during on, and "not light" during off	Section 2.8
Installation condition	Backplane mounting looseness	Securely mounted	Section 4.1.1 and 4.1.2
	Looseness and/or play in unit		
Connection condition	Looseness of terminal screw	No looseness	Section 4.1.3,4.2, 4.4 and 4.5
	Proximity of connection in pinch terminal	Pinched parallel	
	Connector looseness	Locked in	
	Connection condition of expansion cable	Connector section is not loose	
Power supply voltage of power supply unit	Voltage between terminals	$\begin{aligned} & \text { FP2-PSA1: } 100 \text { to } 120 \mathrm{~V} \mathrm{AC} \\ & \text { FP2-PSA2: } 200 \text { to } 240 \mathrm{~V} \text { AC } \\ & \text { FP2-PSA3: } 100 \text { to } 240 \mathrm{~V} \mathrm{AC} \\ & \text { FP2-PSD2: } 24 \mathrm{~V} \text { DC } \end{aligned}$	Section 4.2.1
Power supply voltage for input/output	Voltage between terminals	Within the specified range of each unit	$\begin{aligned} & \text { Section } 2.9 \\ & \text { to } 2.11 \end{aligned}$
Ambient environment	Ambient temperature	0 to $55^{\circ} \mathrm{C} / 32$ to $131^{\circ} \mathrm{F}$	Section 4.1.1
	Ambient humidity	30 to 85\% RH	
	Operating condition	No dust or corrosive gas	
Backup battery	Battery for CPU	Regular replacement	Section 9.1.1
	Battery for IC memory card		

Chapter 10

Specifications

10.1 Specifications

General Specifications

Item	Descriptions
Ambient temperature	0 to $+55^{\circ} \mathrm{C} / 32$ to $131^{\circ} \mathrm{F}$
Storage temperature	-20 to $+70^{\circ} \mathrm{C} /-4$ to $+158^{\circ} \mathrm{F}$
Ambient humidity	30 to $85 \% \mathrm{RH}$ (at $25^{\circ} \mathrm{C}$ non-condensing)
Storage humidity	30 to $85 \% \mathrm{RH}$ (at $25^{\circ} \mathrm{C}$ non-condensing)
Breakdown voltage	$1,500 \mathrm{~V} \mathrm{AC,1} \mathrm{minute} \mathrm{between} \mathrm{AC}$ external terminal and frame ground terminal
	$500 \mathrm{~V} \mathrm{AC,1} \mathrm{minute} \mathrm{between} \mathrm{DC} \mathrm{external} \mathrm{terminal} \mathrm{and} \mathrm{frame} \mathrm{ground} \mathrm{terminal}$
Insulation resistance	$100 \mathrm{M} \Omega$ or more (measured with a 500 V DC megger testing) between external terminal and frame ground terminal
	10 to $55 \mathrm{~Hz}, 1$ cycle/min: double amplitude of $0.75 \mathrm{~mm} / 0.030$ in., 10 min on 3 axes
Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}, 4$ times on 3 axes
Noise immunity	$1,500 \mathrm{Vp}-\mathrm{p}$ with pulse widths 50ns and $1 \mu \mathrm{~s}$ (based on in-house measurements)
Operating conditions	Free from corrosive gases and excessive dust

Dimensions

FP2 backplane

Item					
Number of module	5 modules	7 modules	9 modules	12 modules	14 modules
L (mm/in.)	$140 / 5.512$	$209 / 8.228$	$265 / 10.433$	$349 / 13.740$	$405 / 15.945$

FP2 backplane H type

Item	Description	
Number of module	Basic backplane 11 modules	Expansion backplane 10 modules
L (mm/in.)	$349 / 13.740$	$349 / 13.740$

The illustration above shows the 7-module type. The 5-module type does not have an expansion connector.

10.1 Specifications

Table of Weight

Type				Part number	Weight (Approx.)
FP2 CPU				FP2-C1	130g
				FP2-C1D	220g
				FP2-C1SL	250g
FP2SH CPU				FP2-C2L	130g
				FP2-C2	130 g
				FP2-C2P	170g
				FP2-C3P	170 g
Backplane				FP2-BP05	180 g
				FP2-BP07	280g
				FP2-BP09	350g
				FP2-BP12	470 g
				FP2-BP14	530g
				FP2-BP11MH	470 g
				FP2-BP10EH	470g
FP2 Power supply unit				FP2-PSA1	180 g
				FP2-PSA2	180g
				FP2-PSA3	280g
				FP2-PSD2	300g
Input unit	DC input	16-point ter	nal type, 12 to 24V DC	FP2-X16D2	140g
		32-point con	ctor type, 24V DC	FP2-X32D2	100g
		64-point con	ctor type, 24V DC	FP2-X64D2	120 g
Output unit	Relay output	6-point term	l type	FP2-Y6R	170g
		16-point term	nal type	FP2-Y16R	190g
	Transistor output	16-point term	nal NPN type	FP2-Y16T	150g
		32-point con	ctor NPN type	FP2-Y32T	100g
		64-point con	ctor NPN type	FP2-Y64T	120g
		16-point term	nal PNP type	FP2-Y16P	150 g
		32-point con	ctor PNP type	FP2-Y32P	100 g
		64-point con	ctor PNP type	FP2-Y64P	120 g
I/O mixed unit	32-point 24V DC input/32-point connector NPN output type			$\begin{aligned} & \hline \text { FP2-XY64D2T, } \\ & \text { FP2-XY64D7T } \end{aligned}$	120 g
	32-point 24V DC input/32-point connector PNP output type			$\begin{aligned} & \hline \text { FP2-XY64D2P, } \\ & \text { FP2-XY64D7P } \end{aligned}$	120 g
Intelligent unit	Analog input unit			$\begin{aligned} & \hline \text { FP2-AD8VI, } \\ & \text { FP2-AD8X, } \\ & \text { FP2-RTD } \end{aligned}$	160g
	Analog output unit			FP2-DA4	160g
	High-speed counter unit	NPN		FP2-HSCT	110 g
		PNP		FP2-HSCP	
	Pulse I/O unit	NPN		FP2-PXYT	130 g
		PNP		FP2-PXYP	
	Positioning unit	2-axis type		FP2-PP2	125g
		4-axis type		FP2-PP4	150g
	Positioning unit (Multifunction type)	2-axis type	Transistor output type	FP2-PP21	105g
			Line driver output type	FP2-PP22	
		4-axis type	Transistor output type	FP2-PP41	120 g
			Line driver output type	FP2-PP42	
	Positioning unit (Interpolation type)	2-axis type	Transistor output type	FP2-PP2T	140g
			Line driver output type	FP2-PP2L	150 g
		4-axis type	Transistor output type	FP2-PP4T	140 g
			Line driver output type	FP2-PP4L	150 g
	Serial data unit			FP2-SDU	120 g
	Multi communication unit		Main unit	FP2-MCU	130 g
			Communication block	$\begin{aligned} & \text { FP2-CB232 } \\ & \text { FP2-CB422 } \\ & \text { FP2-CB485 } \end{aligned}$	35g
	Computer communication unit			FP2-CCU	120 g

next page
10.1 Specifications

Type				Part number	Weight (Approx.)
Intelligent unit	S-LINK unit			FP2-SL2	120 g
	Multi-wire link unit			FP2-MW	110 g
	ET-LAN unit, ET-LAN2 unit			FP2-ET1, FP2-ET2	125 g
	MEWNET-VE link unit, MEWNET-VE2 link unit			FP2-VE, FP2-VE2	125 g
	Remote I/O Slave Unit			FP2-RMS	110 g
	FNS Unit	FNS Unit	Transistor output type	FP2-FNS	88g
		FP-FNS Block	PROFIBUS	AFPN-AB6200	31g
			Device Net	AFPN-AB6201	32 g
			CAN open	AFPN-AB6218	32 g
	FMU Unit		PROFIBUS	FP2-DPV1-M	118 g
			Device Net	FP2-DEV-M	118 g
			CAN open	FP2-CAN-M	118 g
Expansion cable				FP2-EC	180 g
				FP2-EC2	400 g

FP2 Performance Specifications

Item		FP2 CPU
		FP2-C1 (AFP2211), FP2-C1D (AFP2212), FP2-C1SL (AFP2214)
Program/control method		Relay symbol/cyclic operation
Controllable I/O points	Basic construction	Using Backplanes: Max. 768 points (12 modules) Using Backplanes H type: Max. 512 points (8 modules)
	Expanded construction	Using Backplanes: Max. 1,600 points (25 modules) Using Backplanes H type: Max. 2,048 points (32 modules)
	Using remote I/O system	Max. 2,048 points (using S-LINK or MEWNET-F system)
Program capacity (* Note 1)	Internal memory	Approx. 16k steps
	Using expansion memory	Approx. 32k steps (* Note 2)
Number of instructions	Basic instructions	96 types
	High-level instructions	428 types
Operation speed (typical value)	Basic instructions	From 0.35 $\mu \mathrm{s}$ per instruction
	High-level instructions	From 0.93 μ s per instruction
Operation memory points for relays	External input relays (X)	2,048 points (* Note 1)
	External output relays (Y)	2,048 points (* Note 1)
	Internal relays (R)	4,048 points (* Note 3)
	Timer/counter (T/C)	Total 1,024 points (* Note 3) - Timer: units of $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$ and 1 s counts up to $32,767 \times$ each unit - Counter: 1 to 32,767 counts
	Link relays (L)	2,048 points (* Notes 3 and 4)
	Pulse relays (P)	1,024 points (* Note 3)
	Alarm relays (E)	Not available
	Data registers (DT)	6,000 words (* Note 3)
	File registers (FL)	0 to 14,333 words (when expanding: 0 to 30,717 words) (* Note 3)
	Link data registers (LD)	256 words (* Notes 3 and 5)
	Timer/counter set value area (SV)	1,024 words
	Timer/counter elapsed value area (EV)	1,024 words
	Index registers (10 to ID)	14 words

10.1 Specifications

Item	FP2 CPU		
	FP2-C1 (AFP2211), FP2-C1D (AFP2212), FP2-C1SL (AFP2214)		
Differential points	Unlimited number of points		
Auxiliary timer	Unlimited number of points, down type timer (0.01 to 327.67s)		
Shift register	Max. 253 points		
Master control relay points (MCR)	256 points		
Number of labels (JP and LOOP)	256 points		
Number of step ladder	1,000 steps (* Note 3)		
Number of subroutine	100 subroutines		
Number of interrupt program	1 program (periodical interrupt: allows setting of the time interval within the range from 0.5 ms to 1.5 s)		
Comment input function	Available (* Note 6)		
Sampling trace function	Max. 1,000 samples (4,000 words) for 16 contacts and 3 words (* Note 2)		
Clock/calendar function	Available (year, month, day, hour, minute, second and day of week) (* Notes 6 and 7)		
Link functions	Inter-PLC link, computer link, remote programming, modem and data transfer		
Self-diagnostic functions	Watchdog timer, memory malfunction detection, I/O malfunction detection, backup battery malfunction detection, program syntax check, etc.		
Other functions	ROM operation function (* Note 8), program block edition during RUN mode, forced input/output, interrupt processing, test run, constant scan and machine language program		
Memory backup time (lithium battery storage time)	CPU only		Min. 10,000 hours (typical: approx. 13,000 hours)
	When installed expansion memory unit	FP2-EM1	Min. 9,000 hours (typical: approx. 12,000 hours)
		$\begin{aligned} & \hline \text { FP2-EM2, } \\ & \text { FP2-EM3 } \end{aligned}$	Min. 8,000 hours (typical: approx. 12,000 hours)
		FP2-EM6	Min. 8,500 hours (typical: approx. 12,500 hours)
		FP2-EM7	Min. 10,000 hours (typical: approx. 13,000 hours)

Notes

1) The practical usable external input and output points are restricted according to the number of the input and output units. The external output relays (Y) that not used at the output unit can be used as internal relays.
2) The expansion memory unit (FP2-EM2, FP2-EM3 or FP2-EM6) is required.
3) Hold or non-hold type can be set using the system registers.
4) Can also be used as internal relays.
5) Can also be used as data registers.
6) The expansion memory unit (FP2-EM1, FP2-EM2 or FP2-EM3) is required.
7) Precision of calendar timer: At $0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$, less than 90 -second error per month. At $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$, less than 40 -second error per month. At $55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}$, less than 98 -second error per month.
8) The expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7) is required.

10.1 Specifications

FP2SH Performance Specifications

Item		FP2SH CPU
		FP2-C2L (AFP2221), FP2-C2 (AFP2231), FP2-C2P (AFP2235), FP2-C3P (AFP2255)
Program/control method		Relay symbol/cyclic operation
Controllable I/O points	Basic construction	Using Backplanes: Max. 768 points (12 modules) Using Backplanes H type: Max. 512 points (8 modules)
	Expanded construction	Using Backplanes: Max. 1,600 points (25 modules) Using Backplanes H type: Max. 2,048 points (32 modules)
	Using remote I/O system	Max. 8,192 points (using S-LINK or MEWNET-F system)
Program capacity	Internal memory	FP2-C2/FP2-C2P: approx. 60K steps FP2-C3P: approx. 120K steps
	Using expansion memory unit	-
Number of instructions	Basic instructions	95 types
	High-level instructions	434 types
Operation speed (typical value)	Basic instructions	From 0.03 $\mu \mathrm{s}$ per instruction
	High-level instructions	From 0.06us per instruction
Operation memory points for relays	External input relays (X)	8,192 points (* Note 1)
	External output relays (Y)	8,192 points (* Note 1)
	Internal relays (R)	14,192 points (* Note 2)
	Timer/counter (T/C)	Total 3,072 points (* Note 2) - Timer: units of $1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}$ and 1 s counts up to $32,767 \times$ each unit - Counter: 1 to 32,767 counts
	Link relays (L)	10,240 points (* Notes 2 and 3)
	Pulse relays (P)	2,048 points (* Note 2)
	Alarm relays (E)	2,048 points (* Note 2)
Operation memory points for memory areas	Data registers (DT)	10,240 words (* Note 2)
	File registers (FL)	$\begin{aligned} & \text { FP2-C2L: 32,765 words } \\ & \text { FP2-C2, FP2-C2P, FP2-C3P: 32,765 words } \times 3 \text { banks (* Note } 2 \text {) } \end{aligned}$
	Link data registers (LD)	8,448 words (* Notes 2 and 4)
	Timer/counter set value area (SV)	3,072 words
	Timer/counter elapsed value area (EV)	3,072 words
	Index registers (IO to ID)	14 words $\times 16$ banks

Item	FP2SH CPU	
	FP2-C2L (AFP2221), FP2-C2 (AFP2231), FP2-C2P (AFP2235), FP2-C3P (AFP2255)	
Differential points	Unlimited number of points	
Auxiliary timer	Unlimited number of points, down type timer (0.01 to 327.67s)	
Shift register	Max. 887 points	
Master control relay points (MCR)	256 points (For FP2-C3P: 1st program: 256 points/2nd program: 256 points)	
Number of labels (JP and LOOP)	256 points (For FP2-C3P: 1st program: 256 points/2nd program: 256 points)	
Number of step ladder	1,000 steps (For FP2-C3P: 1st program only)	
Number of subroutine	100 subroutines	
Number of interrupt program	25 program	
Comment input function	Available (internal function)	
Clock/calendar function	Available (year, month, day, hour, minute, second and day of week) (* Note 5)	
Link functions	Inter-PLC link, computer link, remote programming, modem and data transfer	
Self-diagnostic functions	Watchdog timer, memory malfunction detection, I/O malfunction detection, backup battery malfunction detection, program syntax check, etc.	
Other functions	ROM operation function (* Note 6) forced input/output, interrupt processing, test run and constant scan	
Memory backup time (lithium battery storage time)	CPU only	Min. 3,500 hours or more (typical: approx. 31,000 hours)
	When installing memory unit (AFP2207 or AFP2208)	Min. 3,500 hours (typical: approx. 31,000 hours)
Memory backup time for IC memory card (at $25^{\circ} \mathrm{C}$)	AIC52000 (Rechargeable type)	3 months or more (After full charge)
	AFP2209 (Interchangeable type)	3 years or more

Notes

1) The practical usable external input and output points are restricted according to the number of the input and output units.
2) Hold or non-hold type can be set using the system registers.
3) Can also be used as internal relays.
4) Can also be used as data registers.
5) Precision of calendar timer:

At $0^{\circ} \mathrm{C} / 32^{\circ} \mathrm{F}$, less than 57 -second error per month.
At $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$, less than 88 -second error per month. At $55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}$, less than 88 -second error per month.
6) For FP2-C2L and FP2-C2, the memory unit is required.

10.3 Relays, Memory Areas and Constants

10.2 Relays, Memory Areas and Constants

Item			Function	Numbering	
				FP2	FP2SH
Relay	External input relay	(X)	Turn on or off based on external input.	$\begin{aligned} & \text { 2,048 points } \\ & \text { (X0 to X127F) } \end{aligned}$	8,192 points (X0 to X511F)
	External output relay	(Y)	Externally outputs on or off state.	$\begin{aligned} & \text { 2,048 points } \\ & \text { (YO to Y127F) } \end{aligned}$	8,192 points (Y0 to Y511F)
	$\begin{array}{\|l} \hline \text { Internal relay(R) } \\ \text { (* Note 1) } \end{array}$	(R)	Relay which turns on or off only within program.	4,048 points (R0 to R252F)	14,192 points (R0 to R886F)
	Link relay (* Note 1)	(L)	This relay is a shared relay used for MEWNET link system.	2,048 points (L0 to L127F)	10,240 points (L0 to L639F)
	$\begin{aligned} & \text { Timer } \\ & \text { (* Notes } 1 \text { and 2) } \end{aligned}$	(T)	If a TM instruction has timed out, the contact with the same number turns on.	1,024 points (T0 to T999) C1000 to C1023)	3,072 points(T0 to T2999/C3000 toC3071)
	Counter (* Notes 1 and 2)	(C)	If a CT instruction has counted up, the contact with the same number turn on.		
	Pulse relay	(P)	This relay is used to turn on only for one scan duration programmed with the OT" and OT\# instructions.	1,024 points (P0 to P63F)	$\begin{aligned} & \hline \text { 2,048 points } \\ & \text { (P0 to P127F) } \end{aligned}$
	Error alarm relay	(E)	If turned on while the unit is running, this relay stores the history in a dedicated buffer. Program this relay so that it is turned on at the time of abnormality.	-	2,048 points (E0 to E2047)
	Special internal relay	(R)	Relay which turns on or off based on specific conditions and is used as a flag.	176 points (R9000 to R910F)	176 points (R9000 to R910F)

Item			Function	Numbering	
				FP2	FP2SH
Memory area	External input relay	(WX)	Code for specifying 16 external input points as one word (16 bits) of data.	128 words (WX0 to WX127)	512 words (WX0 to WX511)
	External output relay	(WY)	Code for specifying 16 external output points as one word (16 bits) of data.	128 words (WYO to WY127)	512 words (WYO to WY511)
	Internal relay	(WR)	Code for specifying 16 internal relay points as one word (16 bits) of data.	253 words (WR0 to WR252)	887 words (WR0 to WR886)
	Link relay	(WL)	Code for specifying 16 link relay points as one word (16 bits) of data.	128 words (WLO to WL127)	640 words (WLO to WL639)
	Data register (* Note 1)	(DT)	Data memory used in program. Data is handled in 16-bit units (one word).	6,000 words (DT0 to DT5999)	10,240 words (DT0 to DT10239)
	Link data register (* Note 1)	(LD)	This is a shared data memory which is used within the MEWNET link system. Data is handled in 16-bit units (one word).	256 words (LD0 to LD255)	8,448 words (LD0 to LD8447)
	Timer/Counter set value area (* Note 1)	(SV)	Data memory for storing a target value of a timer and an initial value of a counter. Stores by timer/counter number.	1,024 words (SV0 to SV1023)	3,072 words (SV0 to SV3071)
	Timer/Counter elapsed value area (Note 1 and Note 3)	(EV)	Data memory for storing the elapsed value during operation of a timer/counter. Stores by timer/ counter number.	1,024 words (EV0 to EV1023)	3,072 words (EV0 to EV3071)
	File register (* Notes 1 and 3)	(FL)	Data memory used in program. Data is handled in 16-bit units (one word).	FP2 (16 K): 0 to 14,333 words (FLO to FL14332) FP2 (32 K) (when expanded): 0 to 30,717 words (FLO to FL30716)	FP2-C2L: 32,765 words FP2-C2, FP2-C2P, FP2-C3P: 32,765 words \times 3 banks
	Special data register	(DT)	Data memory for storing specific data. Various settings and error codes are stored.	256 words (DT90000 to DT90255)	512 words (DT90000 to DT90511)
	Index register	(I)	Register can be used as an address of memory area and constants modifier.	14 words (I0 to ID)	14 words \times 16 banks (IO to ID)

* next page
10.3 Relays, Memory Areas and Constants

Item		Numbering
		FP2/FP2SH
Control instruction point	Master control relay points (MCR)	256 points
	Number of labels (JP and LOOP)	Total: 256 points
	Number of step ladder (* Note 4)	1,000 steps
	Number of subroutine	100 subroutines
	Number of interrupt program	1 program (periodical interrupt: allows setting of the time interval within the range from 0.5 ms to 1.5 s)
Constant	Decimal constants (K)	K-32768 to K32767 (for 16-bit operation)
		K-2147483648 to K2147483647 (for 32-bit operation)
	Hexadecimal constants	H0 to HFFFF (for 16-bit operation)
		H0 to HFFFFFFFFF (for 32-bit operation)
	Decimal constants (monorefined real number)	$\mathrm{f}-1.175494 \times 10^{-38}$ to $f-3.402823 \times 10^{38}$ f1. 175494×10^{-38} to $f 3.402823 \times 10^{38}$

Notes

1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. The selection of hold type and non-hold type can be changed by the setting of system register.
2) The points for the timer and counter can be changed by the setting of system register 5 . The numbers given in the table are numbers when system register 5 is at its default setting.
3) The size of the file register varies depending on the settings of system registers 0,1 and 2.
4) Hold or non-hold type can be set using the system registers.

10.3 Cable/Adapter Specifications

10.3.1 AFC8503/AFC8503S

10.3.2 AFC85305/AFC8531/AFC8532 (For extending for the tool port)

	$\mathrm{L}(\mathrm{mm})$
AFC85305	$500 \pm{ }_{0}^{100}$
AFC8531	$1000 \pm_{0}^{100}$
AFC8532	$2000 \pm_{0}^{100}$

(Unit: mm)
(Unit: mm)
10.3 Cable/Adapter Specifications

Chapter 11

Appendix

11.1 System Registers / Special Internal Relays / Special Data Registers

Precaution for System Registers
What is the system register area

- System registers are used to set values (parameters) which determine operation ranges and functions used. Set values based on the use and specifications of your program.
- There is no need to set system registers for functions which will not be used.

Type of system registers
The registers to be used depend on each PLC.
(1) Allocation of user memory (System registers 0,1 and 2)

These registers set the size of the program area and file register area, allowing the user memory area to be configured for the environment used. The size of the memory area will vary depending on the type.
(2) Allocation of timers and counters (System register 5)

The number of timers and counters is set by specifying the starting counter number.
(3) Hold/non-hold type setting (System registers 6 to 18)

When these registers are set to "hold type", the values in the relays and data memory will be retained even if the system is switched to PROG. mode or the power is turned off. If set to "non-hold type", the values will be cleared to " 0 ".
(4) Operation mode setting on error (System registers 4, 20 to 28)

Set the operation mode when errors such as battery error, duplicated use of output, I/O verification error and operation error occur.
(5) Time settings (System registers 29 to 34)

Set time-out error detection time and the constant scan time.
(6) Remote I/O operation settings (System registers 25, 35 and 36)

These registers are used to select whether or not to wait for a slave station connection when the remote I/O is started, and the remote I/O update timing.
(7) MEWNET-W PLC link settings (System registers 40 to 47, 50 to 55, and 57)

These settings are for using link relays and link registers for MEWNET-W PC(PLC) link communication. Note) The default value setting is "no PC(PLC) link communication".
(8) Tool and COM port communication settings (System registers 410 to 418)

Set these registers when the Tool port and COM port are to be used for computer link, general-purpose serial communication, $\mathrm{PC}(\mathrm{PLC})$ link, and modem communication. Note that the default setting is computer link mode.

Checking and changing the set value of system register

If you are going to use a value which is already set (the value which appears when read), there is no need write it again.

Using programming tool software Produce:

1. Set the control unit in the PROG mode.
2.Option ->PLC Configuration
3.When the function for which setting are to be entered is selected in the PLC Configuration dialog box, the value and setting status for the selected system register are displayed. To change the value and setting status, write in the new value and /or select the setting status.
4.To register these settings, choose OK

Precautions for system register setting

- System register settings are effective from the time they are set. However, input settings, tool portico port, and modem connection settings become effective when the mode is changed from PROG. to RUN.
- With regard to the modem connection setting, when the power is turned off and on or when the mode is changed from PROG. to RUN, the controller sends a command to the modem which enables it for reception.
- When the initialized operation is performed, all set system register values (parameters) will be initialized

11.1.1 Table of System Registers for FP2/FP2SH/FP10SH

Allocation of user memory (system registers 0,1 and 2)

Available PLC: FP2
The configuration of user memory of FP2 is as follows:

Be sure to set the A (using system register 0), B (using system register 1), and C (using system register
2) as even numbers.

The area remaining in A after 512 words are subtracted is the sequence program area that can actually be used.
File register area D is the area that remains after A, B, and C have been subtracted from the user memory capacity.
The configuration area is reserved for future expansion.

FP2 (16K)

Users memory capacity : 16K words
Setting range of $A \quad: 2 \mathrm{~K}$ to 16 K words (default value: 12k)
Setting range of $B \quad: 0$ to 14 K words (default value: 0)
Setting range of $C \quad: 0$ to 14 K words (default value: 0)
Allocate so that $A+B+C \geqq 16$

Setting example: The values of D when $B=C=0$.

A	Area for sequence program $(\mathbf{1 0 2 4} \mathbf{x}$ A-512)	Area for file registers (D)
$\mathbf{2}$	1,535 steps	14,333 words
$\mathbf{4}$	3,583 steps	12,285 words
$\mathbf{6}$	5,631 steps	10,237 words
$\mathbf{8}$	7,679 steps	8,189 words
$\mathbf{1 0}$	9,727 steps	6,141 words
$\mathbf{1 2}$	$\mathbf{1 1 , 7 7 5}$ steps (default value)	$\mathbf{4 , 0 9 3}$ words (default value)
$\mathbf{1 4}$	$\mathbf{1 3 , 8 2 3}$ steps	$\mathbf{2 , 0 4 5}$ words
$\mathbf{1 6}$	15,871 steps	0 word

FP2 (32K)

Users memory capacity : 32K words
Setting range of $A \quad: 2 \mathrm{~K}$ to 32 K words (default value: 12 k)
Setting range of $B \quad: 0$ to 30 K words (default value: 0)
Setting range of $C \quad: 0$ to 30 K words (default value: 0)

Allocate so that $A+B+C \leqq 32$.
Setting example: The values of D when $\mathrm{B}=\mathrm{C}=0$.

A	Area for $\mathbf{~ s e q u e n c e ~ p r o g r a m ~}$ $(\mathbf{1 0 2 4} \mathbf{x}$ A-512)	Area for file registers (D)
$\mathbf{2}$	1,535 steps	30,717 words
$\mathbf{4}$	3,583 steps	28,669 words
$\mathbf{6}$	5,631 steps	26,621 words
$\mathbf{8}$	7,679 steps	24,573 words
$\mathbf{1 0}$	9,727 steps	22,525 words
$\mathbf{1 2}$	$\mathbf{1 1 , 7 7 5}$ steps (default value)	$\mathbf{2 0 , 4 7 7}$ words (default value)
$\mathbf{1 4}$	$\mathbf{1 3 , 8 2 3}$ steps	18,429 words
$\mathbf{1 6}$	15,871 steps	16,381 words
$\mathbf{1 8}$	17,919 steps	14,333 words
$\mathbf{2 0}$	19,967 steps	12,285 words
$\mathbf{2 2}$	22,015 steps	10,237 words
$\mathbf{2 4}$	24,063 steps	8,189 words
$\mathbf{2 6}$	$\mathbf{2 6 , 1 1 1}$ steps	6,141 words
$\mathbf{2 8}$	$\mathbf{2 8 , 1 5 9}$ steps	4,093 words
$\mathbf{3 0}$	30,207 steps	2,045 words
$\mathbf{3 2}$	32,255 steps	0 word

Setting example for each area
When not using the machine language program area
Refer to the tables for the different types given above.
When using the machine language program area

A	Area for machine language program
$\mathbf{2}$	4,096 words
$\mathbf{4}$	8,192 words
$\mathbf{6}$	12,288 words
$\mathbf{8}$	16,384 words
$\mathbf{1 0}$	20,480 words
$\mathbf{1 2}$	24,576 words
$\mathbf{1 4}$	28,672 words
$\mathbf{1 6}$	32,768 words

B	Area for machine language program
$\mathbf{1 8}$	36,864 words
$\mathbf{2 0}$	40,960 words
$\mathbf{2 2}$	45,056 words
$\mathbf{2 4}$	49,152 words
$\mathbf{2 6}$	53,248 words
$\mathbf{2 8}$	57,344 words
$\mathbf{3 0}$	61,440 words

For example, for the FP2 (16K-step type), when the area for the sequence program (A) is set to 10 K words and the area for configuration (C) is set to OK words, the area for the machine language program can be set up to 6K words.

Setting the number of timers and counter (system register 5)

Timers and counters share the same area. If the method of dividing the area is changed, the number of timers and counters will also change.

Type	Total point numbers	Default value of system register 5	Timer	Counter
FP2	1,024 points	1000	1000 points (No. 0 to 999)	24 points (No. 1000 to 1023)
FP2SH/FP10SH	3,072 points	3000	3000 points (No. 0 to 2999)	72 points (No. 3000 to 3071)

- For FP2/FP2SH, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.
- By setting system register 5 to " 0 ", the whole area becomes the counter. Also, by setting it to the value 1 higher than the last number, the whole area becomes the timer.

Hold type area starting address (system registers 6 to 13)
Set each relay and register to a hold type or non-hold type.

- For normal situations, set the system registers 5 and 6 to the same value. This sets the timer to a nonhold type and counter to a hold type.
- By setting this value to the first number, the whole area becomes hold type. Also, by setting it to the value 1 higher than the last number, the whole area becomes non-hold type.
- The relays and registers for links not specified in the send area of system registers 40 to 55 are nonhold type regardless of what is set here.
- For the FP2SH/FP10SH, the index registers can be set to hold type or non-hold type. The register numbers and settings are related as shown below.

Bank number	Set value for IO to ID	Bank number	Set value for I0 to ID
Bank 0	0 to 13	Bank 8	112 to 125
Bank 1	14 to 27	Bank 9	126 to 139
Bank 2	28 to 41	Bank A	140 to 153
Bank 3	42 to 45	Bank B	154 to 167
Bank 4	56 to 69	Bank C	168 to 181
Bank 5	70 to 83	Bank D	182 to 195
Bank 6	84 to 97	Bank E	196 to 209
Bank 7	98 to 111	Bank F	210 to 223

efault value of hold type area setting

Type Area	FP2	FP2SH
Timer	All non-hold type	
Counter	All hold type	
Internal relay	Non-hold type: 200 words (WR0 to WR199)	Non-hold type: 500 words (WRO to WR499)
	Hold type: 53 words (WR200 to WR252)	Hold type: 387 words (WR500 to WR886)
Data register	All hold type	
File register	All hold type	
Link relay for MEWNET-W	All hold type	
Link register for MEWNET-W	All hold type	
Index register	-	All hold type

Aype	
	All non-hold type
Counter	All hold type
Internal relay	Non-hold type: 500 words (WR0 to WR499)
	Hold type: 387 words (WR500 to WR886)
Data register	All hold type
File register	All hold type
Link relay for MEWNET-W/P	All hold type
Link register for MEWNET-WIP	All hold type
Link relay for MEWNET-H	All hold type
Link register for MEWNET-H	All hold type
Index register for FP10SH	All hold type

MEWNET-W PC link setting

For PC link (W) 0: System registers 40 to 45
For PC link (W) 1: System registers 50 to 55
Regarding the link relays and link data registers, specify the range for communication and divide it up for sending and receiving.

- The default settings have the range for communication (system registers $40,41,50$ and 51) set to 0 so that PC link communication is not possible.
- If the range for sending (system registers $43,45,53$ and 55) is set to 0 , the range for communication will all be for receiving.
- The link relay and link data register ranges not used for communication, can each be used as internal relays and data registers.

Table of system registers for FP2/FP2SH/FP10SH

Item	Address	Name		Default value	Descriptions
Allocation of user memory	0	Sequence program area capacity setting Available PLC: FP2		12K words	FP2 (16K): 2 to 16 K words FP2 (32K): 2 to 32 K words
	1	Machine language program area capacity setting Available PLC: FP2		0 word	FP2 (16K): 0 to 14 K words FP2 (32K): 0 to 30 K words
	2	Configuration capacity setting Available PLC: FP2		0 word	FP2 (16K): 0 to 14 K words FP2 (32K): 0 to 30K words
Action on error	4	Battery error alarm		Enabled	Enabled: When a battery error occurs, a self-diagnostic error is issued and the ERROR LED lights. (BATT. LED lights.) (BAsabled: When a battery error occurs, a self-diagnostic error is not issued and the ERROR LED does not light. (BATT. LED does not light.)
		Memory area contents setting at INITIALIZE position	Internal relay (R)	Cleared	When the initialize/ test switch is set to INITIALIZE position while in the PROG. mode, you can specify the type of memory to be cleared. When the initialize/test switch is set to INITIALIZE position while in the PROG. mode, you can specify the type of memory to be not cleared
			Link relay (L)	Cleared	
			Timers/ Counters (T , C, SV, EV)	Cleared	
			Data register (DT)	Cleared	
			Link data register (LD)	Cleared	
			File register (FL)	Cleared	
			Index register (I)	Cleared	
			Error alarm relay (E)	Cleared	
		Differential type instructions setting between MC and MCE instructions		Conventional	Conventional: Holds preceded result in the MC and MCE instruction set. New: Disregards preceded result in the MC and MCE instruction set.
		TM instruction operation setting Available PLC: FP2SH, FP10SH		Conventional	Conventional: Scan synchronous New: Scan asynchronous
		Index modifier check setting		Enabled	Enabled: Checks for overflow of the index modifier area, and performs normal processing. Disabled: Performs processing without checking for overflow of the index modifier area.

Note) The error alarm relay is available for FP2SH and FP10SH.

Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH
MEWNET-P: FP10SH

Item	Address	Name	Default value	Descriptions
Hold/ Nonhold	16	Hold type area starting address setting for MEWNET-H link relays Available PLC: FP10SH	128	128 to 640
	17	Hold type area starting address setting for MEWNET-H link data registers Available PLC: FP10SH	256	256 to 8448
	18	Hold type area starting address setting for index register Available PLC: FP2SH/ FP10SH	0	0 to 224
	19	Hold type area starting address setting for file register (for bank 2) Available PLC: FP2SH	0	0 to 32765
Action on error	20	Disable or enable setting for duplicated output	Disable	Disable/enable
	21	Operation settings when MEWNET-TR communication error occurs	Stop	Stop/continuation
		Operation setting when I/O error occurs	Stop	Stop/continuation
	22	Operation settings when an intelligent unit error occurs	Stop	Stop/continuation
	23	Operation settings when an I/O verification error occurs	Stop	Stop/continuation
	24	Operation settings when a system watching dog timer error occurs Available PLC: FP2SH/ FP10SH	Stop	Stop/continuation Set the time-out time for watching dog timer with system register 30.
	25	Operation settings when connection time error occurs in the remote slave station	Stop	Stop/continuation
	26	Operation settings when an operation error occurs	Stop	Stop/continuation
	27	Operation settings when communication error occurs in the MEWNET-F system	Stop	Stop/continuation
	28	Operation settings when error occurs in the slave station of the MEWNET-F system	Stop	Stop/continuation

Item	Address	Name	Default value	Descriptions
Time setting for FP2SH/ FP10SH	29	Operation time setting for communication processing	240 ¢	0 to $52428 \mu \mathrm{~s}$ If the response of the connected programmable display is show, please make the value bigger.
	30	Time-out time setting of system watching dog timer	100 ms	0.4 to 640 ms
	31	Multi-frame communication time settings in the computer link and communication time setting for data sending buffer	6500 ms	10 to 81917.5 ms
	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions	10000 ms	10 to 81917.5 ms
	33	Effective time setting for monitoring	$\begin{array}{\|l\|} \hline 163837.5 \\ \mathrm{~ms} \\ \hline \end{array}$	2500 to 163837.5 ms
	34	Constant scan time setting	0 ms : Normal scan	0 to 640 ms : Scans once each specified time interval. Set "0": Normal scan Setting time can be obtained using the formula "Set time" = "Set value" x 0.1 (ms)
Time setting for FP2	31	Multi-frame communication time settings in the computer link	6500 ms	10.0 to 8190.0 ms
	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions	2000 ms	10.0 to 8190.0 ms
	33	Program block-editing time in the RUN mode	$10000 \mu \mathrm{~s}$	800.0 to $52428.0 \mu \mathrm{~s}$
	34	Constant scan time setting	0 : Normal scan	0 to 640 ms : Scans once each specified time interval. Set "0": Normal scan

Item	Add- ress	Name	Default value	Descriptions
$\mathbf{2 5}$	Operation settings when connection time error occurs in the remote slave station Available PLC: FP2SH	Stop	Stop/continuation	

Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH
MEWNET-P: FP10SH

Item	Address	Name		Default value	Descriptions
$\begin{aligned} & \text { MEWNET } \\ & -\mathrm{H} \\ & \text { setting } \end{aligned}$	49	Processing capacity setting for PC link of MEWNET-H link system Available PLC: FP10SH		4 (1024 bytes per scan)	0: All data in a scan 1 to 65535: Setting processing capacity per scan can be obtained using the formula "Capacity" = "Set value" x 256 bytes
PC link 1 setting	50	PC link 1 settings for MEWNET-W/-P link system (*Note)	Size of link relays used for communication	0	0 to 64 words
	51		Size of link data registers used for communication	0	0 to 128 words
	52		Send area starting address of link relay	64	64 to 127
	53		Size of link relays used for send area	0	0 to 64 words
	54		Send area starting address of link data register	128	128 to 255
	55		Size of link data registers used for send area	0	0 to 127 words
Tool port setting	410	Unit number setting for tool port Available PLC: FP2\| FP2SH		1	1 to 99 (unit No. 1 to 99)
	411	Communication format setting for tool port Available PLC: FP2I FP2SH		Communication format (character bit): 8 bits, Modem communication: Disabled	Character bits: 7 bits/8bits Modem communication: Enabled/Disabled When connecting a modem, set the unit number to 1 with system register 410.

Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH
MEWNET-P: FP10SH

Item	Address	Name	Default value	Descriptions	
Tool port setting	414	Baud rate setting for the tool port	19200 bps	In the FP10SH, when the dip switch SW1 on the CPU is off, the baud rate setting is effective. In the FP2/FP2SH, when the dip switch SW1 on the rear of the CPU is off, the baud rate setting is effective. 19200 bps 19200 bps 1200 bps 38400 bps 2400 bps 57600 bps 4800 bps 115200 bps 9600 bps	
СОМ port setting	412	Communication method setting for COM port	FP2: Not used FP2SH/ FP10SH: Computer link	UNUSED: COM port is not used. COMPUTER LINK: computer link mode (when connecting C-NET) GENERAL: serial data communication mode	
	413	Communication format setting (Common setting for both computer link and serial data communication) When used for computer link, the start and end code settings of format for MEWTOCOL-COM will not be effective. Available PLC: FP2\| FP2SH	Character bit: 8 bits, Parity chk: "With, odd" Stop bit: 1 bit, End code: CR, Start code: NO STX	Character bit: 7 b Parity chk: non/with Stop bit: 1 bit/2 bi End code: CR/CR Start code: NO S	s/8 bits odd/with even + LF/NON/ETX XISTX
	414	Baud rate setting for the COM port Available PLC: FP2\| FP2SH	19200 bps	19200 bps 19200 1200 bps 38400 2400 bps 57600 4800 bps 11520 9600 bps	$\begin{aligned} & \text { bps } \\ & \text { bps } \\ & \text { bps } \\ & \text { bps } \end{aligned}$
	415	Unit number setting for COM port Available PLC: FP2\| FP2SH	1	1 to 99 (unit No. 1 to 99)	
	416	Modem compatibility setting for COM port Available PLC: FP2\| FP2SH	Modem disabled	Modem enabled/Modem disabled When connecting a modem, set the unit number to 1 with system register 415.	
General communication setting	417	Starting address setting for received buffer of serial data communication mode (data register number)	0	FP2SH/FP10SH: 0 to 10240 FP2: 0 to 5999	For details about its usage, refer to the F144 (TRNS)/ P144 (PTRNS) instructions.
	418	Capacity setting for received buffer of serial data communication mode (word number)	1024	0 to 1024	

Operation of DF instruction between MC and MCE instructions

When a leading edge detection instruction (DF instruction) is used with the MC and MCE instructions, the derivative output may change as follows depending on the trigger of MC instruction and input timing of DF instruction. Take care regarding this point.

Example 1:

When system register 4 sets 0 (conventional)
Time chart 1

Time chart 2

Example 2:

When system register 4 sets 1 (new)

Time chart 1

Time chart 2

11.1.2 Table of Special Internal Relays for FP2/FP2SH/FP10SH

FP2/FP2SH/FP10SH

Address	Name	Description
R9000	Self-diagnostic error flag	Turns on when a self-diagnostic error occurs. The self-diagnostic error code is stored in DT90000.
R9001	Not used	-
R9002	MEWNET-TR master error flag (Available PLC: FP10SH)	Turns on when a communication error occurs in the MEWNET-TR master unit or MEWNET-TR network. The slot, where the erroneous MEWNET-TR master unit is installed, can be checked using DT90002 or DT90003.
	I/O error flag (Available PLC: FP2 FP2SH)	Turns on when the error occurs in the I/O unit. The slot number of the unit where the error was occurred is stored in DT90002, DT90003.
R9003	Intelligent unit error flag	Turns on when an error occurs in an intelligent unit. The slot number, where the erroneous intelligent unit is installed is stored in DT90006 or DT90007.
R9004	I/O verification error flag	Turns on when an I/O verification error occurs. The slot number of the I/O unit where the verification error was occurred is stored in DT90010 or DT90011.
R9005	Backup battery error flag (non-hold)	Turns on for an instant when a backup battery error occurs.
R9006	Backup battery error flag (hold)	Turns on and keeps the on state when a backup battery error occurs. To reset R9006, - turn the power to off and then turn it on, - initialize, after removing the cause of error.
R9007	Operation error flag (hold)	Turns on and keeps the on state when an operation error occurs. The address where the error occurred is stored in DT90017. (Indicates the first operation error which occurred). FP2SH/FP10SH: When program is 120 k steps and the higher byte of DT90257 is H 2 , the error occurs in the 2nd program block. In case of the 1st program block, it is H 1 .
R9008	Operation error flag (non-hold)	Turns on for an instant when an operation error occurs. The address where the operation error occurred is stored in DT90018 The contents change each time a new error occurs. FP2SH/FP10SH: When program is 120 k steps and the higher byte of DT90258 is H 2 , the error occurs in the 2nd program block. In case of the 1st program block, it is H 1 .
R9009	Carry flag	Turns on for an instant, - when an overflow or underflow occurs. - when " 1 " is set by one of the shift instructions.
R900A	> Flag	Turns on for an instant when the compared results become larger in the "F60 (CMP)/P60 (PCMP), F61(DCMP)P61(PDCMP),F62 (WIN)/P62 (PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."
R900B	= Flag	Turns on for an instant, - when the compared results are equal in the comparison instructions. - when the calculated results become 0 in the arithmetic instructions.

Address	Name	Description
R900C	< Flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP)/P60 (PCMP), F61(DCMP)P61(PDCMP), F62 (WIN)/P62 ,(PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."
R900D	Auxiliary timer contact	Turns on when the set time elapses (set value reaches 0) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction. The R900D turns off when the trigger for auxiliary timer instruction turns off.
R900E (*Note)	Tool port error flag Available PLC: FP2SH	Turns on when communication error at tool port is occurred.
R900F	Constant scan error flag	Turns on when the scan time exceeds the time specified in system register 34 during constant scan execution.
R9010	Always on relay	Always on.
R9011	Always off relay	Always off.
R9012	Scan pulse relay	Turns on and off alternately at each scan.
R9013	Initial on pulse relay	Turns on only at the first scan in the operation. Turns off from the second scan and maintains the off state.
R9014	Initial off pulse relay	Turns off only at the first scan in the operation. Turns on from the second scan and maintains the on state.
R9015	Step ladder initial on pulse relay	Turns on for an instant only in the first scan of the process the moment step ladder process is opened.
$\begin{aligned} & \text { R9016, } \\ & \text { R9017 } \end{aligned}$	Not used	-
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles.
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s cycles.
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.
R901F	Not used	-

Note) Used by the system.

FP2/FP2SH/FP10SH

Address	Name	Description
R9020	RUN mode flag	Turns off while the mode selector is set to PROG. Turns on while the mode selector is set to RUN.
R9021 (*Note)	Test RUN mode flag	Turns on while the initialize/test switch of the CPU is set to TEST and mode selector is set to RUN. (test run operation start) Turns off during the normal RUN mode.
R9022 (*Note)	Break flag	Turns on while the BRK instruction is executing or the step run is executing.
R9023 (*Note)	Break enable flag	Turns on while the BRK instruction is enabled in the test RUN mode.
R9024 (*Note)	Output update enable flag in the test RUN mode	Turns on while the output update is enabled in the test RUN mode.
R9025 (*Note)	Single instruction flag	Turns on while the single instruction execution is selected in the test RUN mode.
R9026 (*Note)	Message flag	Turns on while the F149 (MSG)/P149 (PMSG) instruction is executed.
R9027 (*Note)	Remote mode flag	Turns on while the mode selector is set to REMOTE.
R9028 (*Note)	Break clear flag	Turns on when the break operation is cleared.
R9029 (*Note)	Forcing flag	Turns on during forced on/off operation for I/O relay and timer/counter contacts.
R902A	External interrupt enable flag (Available PLC: (*Note)	Turns on while the external interrupt trigger is enabled by the ICTL instruction.
	Interrupt flag (Available PLC: FP2)	Turns on while the periodical interrupt is executed by the ICTL instruction.
R902B (*Note)	Interrupt error flag	Turns on when an interrupt error occurs.
R902C (*Note)	Sampling point flag	Turns off during instructed sampling. Turns on while sampling is triggered by the periodical interrupt.
R902D (*Note)	Sampling trace end flag	Turns on when the sampling trace ends.
R902E (*Note)	Sampling trigger flag	Turns on when the sampling trace trigger of the F156 (STRG)/P156 (PSTGR) instruction is turned on.
R902F (*Note)	Sampling enable flag	Turns on when the starting point of sampling is specified.

Note) Used by the system.

FP2/FP2SH/FP10SH

Address	Name	Description
R9030	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instruction executing flag	Monitors if CPU is in the F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions executable condition as follows: - off: None of the above mentioned instructions can be executed. - on: One of the above mentioned instructions can be executed.
R9031	F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instruction end flag	Monitors if an abnormality has been detected during the execution of the F145 (SEND)/P145 (PSEND) and F146 (RECV)/P146 (PRECV) instructions as follows: - off: No abnormality detected. - on: An abnormality detected. (communication error) The error code is stored in DT90039.
R9032	COM port mode flag	Monitors the mode of the COM port as: - on: Serial data communication mode - off: Computer link mode
R9033	F147 (PR) instruction flag	Turns on while a F147 (PR) instruction is executed. Turns off when a F147 (PR) instruction is not executed.
R9034	Editing in RUN mode flag	Turns on while editing a program in the RUN mode.
R9035	F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instruction execution flag	Monitors if FP3/FP10SH is in the F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions executable condition as follows: - off: None of the above mentioned instructions can be executed. - on: One of the above mentioned instructions can be executed.

FP2/FP2SH/FP10SH

Address	Name	Description
R9036	F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instruction end flag	Monitors if an abnormality has been detected during the execution of the F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions as follows: - off: No abnormality detected. - on: An abnormality detected. (access error) The error code is stored in DT90036.
R9037	COM port communica- tion error flag	Turns on when the serial data communication error occurs using COM port. Turns off when data is being sent by the F144 (TRNS) instruction.
R9038	COM port receive flag	Turns on when the end code is received during the serial data communicating.
R9039	COM port send flag	Turns on while data is not sent during the serial data communicating. Turns off while data is being sent during the serial data communicating.
R903A	Not used	-
R903B	Not used	-
R903C	Not used	-
R903D	Not used	-
R903E	Not used	-
R903F	Not used	-
R9040	Error alarm (0 to 2047) Available PLC: FP2SH/FP10SH	Turns on while the error alarm relay (E0 to E2047) acts. Turns off when the all error alarm relay turns off.

FP2/FP2SH/FP10SH

Address	Name	Description
R9050	MEWNET-WI-P link transmission error flag [WIP LINK 1]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 1. - turns on when there is an error in the link area settings.
R9051	MEWNET-WI-P link transmission error flag [WIP LINK 2]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 2. - turns on when there is an error in the link area settings.
R9052	MEWNET-WI-P link transmission error flag [W/P LINK 3]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 3. - turns on when there is an error in the link area settings.
R9053	MEWNET-WI-P link transmission error flag [W/P LINK 4]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 4. - turns on when there is an error in the link area settings.
R9054	MEWNET-WI-P link transmission error flag [W/P LINK 5]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 5. - turns on when there is an error in the link area settings.
R9055	Not used	-
R9056	Not used	-
R9057	Not used	-
R9058	Remote I/O transmission error flag (master 1)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 1. - turns on when there is an error in the settings.
R9059	Remote I/O transmission error flag (master 2)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 2. - turns on when there is an error in the settings.
R905A	Remote I/O transmission error flag (master 3)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 3. - turns on when there is an error in the settings.
R905B	Remote I/O transmission error flag (master 4)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 4. - turns on when there is an error in the settings.
R905C to R905F	Not used	-

Address	Name		Description
R9060	MEWNET-WI -P PC link transmission assurance relay [for PC link 0 (W/P)] (*Note)	Unit No. 1	Turns on when Unit No. 1 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9061		Unit No. 2	Turns on when Unit No. 2 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9062		Unit No. 3	Turns on when Unit No. 3 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9063		Unit No. 4	Turns on when Unit No. 4 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9064		Unit No. 5	Turns on when Unit No. 5 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9065		Unit No. 6	Turns on when Unit No. 6 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9066		Unit No. 7	Turns on when Unit No. 7 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9067		Unit No. 8	Turns on when Unit No. 8 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9068		Unit No. 9	Turns on when Unit No. 9 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9069		Unit No. 10	Turns on when Unit No. 10 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906A		Unit No. 11	Turns on when Unit No. 11 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906B		Unit No. 12	Turns on when Unit No. 12 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906C		Unit No. 13	Turns on when Unit No. 13 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906D		Unit No. 14	Turns on when Unit No. 14 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906E		Unit No. 15	Turns on when Unit No. 15 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906F		Unit No. 16	Turns on when Unit No. 16 is communicating properly I n the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.

Note) When the system registers $46=K 0, P C$ link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers 46=K1, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

Address	Name		Description
R9070	MEWNET-WI-P PC link operation mode relay [for PC link 0 (W/P)]	Unit No. 1	Turns on when unit No. 1 is in the RUN mode. Turns off when unit No. 1 is in the PROG. mode.
R9071		Unit No. 2	Turns on when unit No. 2 is in the RUN mode. Turns off when unit No. 2 is in the PROG. mode.
R9072		Unit No. 3	Turns on when unit No. 3 is in the RUN mode. Turns off when unit No. 3 is in the PROG. mode.
R9073		Unit No. 4	Turns on when unit No. 4 is in the RUN mode. Turns off when unit No. 4 is in the PROG. mode.
R9074		Unit $\text { No. } 5$	Turns on when unit No. 5 is in the RUN mode. Turns off when unit No. 5 is in the PROG. mode.
R9075		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 6 \\ \hline \end{array}$	Turns on when unit No. 6 is in the RUN mode. Turns off when unit No. 6 is in the PROG. mode.
R9076		Unit No. 7	Turns on when unit No. 7 is in the RUN mode. Turns off when unit No. 7 is in the PROG. mode.
R9077		Unit No. 8	Turns on when unit No. 8 is in the RUN mode. Turns off when unit No. 8 is in the PROG. mode.
R9078		Unit No. 9	Turns on when unit No. 9 is in the RUN mode. Turns off when unit No. 9 is in the PROG. mode.
R9079		Unit No. 10	Turns on when unit No. 10 is in the RUN mode. Turns off when unit No. 10 is in the PROG. mode.
R907A		Unit No. 11	Turns on when unit No. 11 is in the RUN mode. Turns off when unit No. 11 is in the PROG. mode.
R907B		Unit No. 12	Turns on when unit No. 12 is in the RUN mode. Turns off when unit No. 12 is in the PROG. mode.
R907C		Unit No. 13	Turns on when unit No. 13 is in the RUN mode. Turns off when unit No. 13 is in the PROG. mode.
R907D		Unit No. 14	Turns on when unit No. 14 is in the RUN mode. Turns off when unit No. 14 is in the PROG. mode.
R907E		Unit No. 15	Turns on when unit No. 15 is in the RUN mode. Turns off when unit No. 15 is in the PROG. mode.
R907F		Unit No. 16	Turns on when unit No. 16 is in the RUN mode. Turns off when unit No. 16 is in the PROG. mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers $46=\mathrm{K} 1$, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

Address	Name		Description
R9080	MEWNET-WI-P PC link transmission assurance relay [for PC link 1 (WIP)] (*Note)	Unit No. 1	Turns on when unit No. 1 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9081		Unit No. 2	Turns on when unit No. 2 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9082		Unit No. 3	Turns on when unit No. 3 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9083		Unit No. 4	Turns on when unit No. 4 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9084		Unit No. 5	Turns on when unit No. 5 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9085		Unit No. 6	Turns on when unit No. 6 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9086		Unit No. 7	Turns on when unit No. 7 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9087		Unit No. 8	Turns on when unit No. 8 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9088		Unit No. 9	Turns on when unit No. 9 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9089		Unit No. 10	Turns on when unit No. 10 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908A		Unit No. 11	Turns on when unit No. 11 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908B		Unit No. 12	Turns on when unit No. 12 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908C		Unit No. 13	Turns on when unit No. 13 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908D		Unit No. 14	Turns on when unit No. 14 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908E		Unit No. 15	Turns on when unit No. 15 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908F		Unit No. 16	Turns on when unit No. 16 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers 46=K1, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

Address	Name		Description
R9090	MEWNET-WI-P PC link operation mode relay [for PC link 1 (WIP)] (*Note)	Unit No. 1	Turns on when unit No. 1 is in the RUN mode. Turns off when unit No. 1 is in the PROG. mode.
R9091		Unit No. 2	Turns on when unit No. 2 is in the RUN mode. Turns off when unit No. 2 is in the PROG. mode.
R9092		Unit No. 3	Turns on when unit No. 3 is in the RUN mode. Turns off when unit No. 3 is in the PROG. mode.
R9093		Unit No. 4	Turns on when unit No. 4 is in the RUN mode. Turns off when unit No. 4 is in the PROG. mode.
R9094		Unit No. 5	Turns on when unit No. 5 is in the RUN mode. Turns off when unit No. 5 is in the PROG. mode.
R9095		$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { No. } 6 \\ \hline \end{array}$	Turns on when unit No. 6 is in the RUN mode. Turns off when unit No. 6 is in the PROG. mode.
R9096		Unit No. 7	Turns on when unit No. 7 is in the RUN mode. Turns off when unit No. 7 is in the PROG. mode.
R9097		Unit No. 8	Turns on when unit No. 8 is in the RUN mode. Turns off when unit No. 8 is in the PROG. mode.
R9098		Unit No. 9	Turns on when unit No. 9 is in the RUN mode. Turns off when unit No. 9 is in the PROG. mode.
R9099		Unit No. 10	Turns on when unit No. 10 is in the RUN mode. Turns off when unit No. 10 is in the PROG. mode.
R909A		Unit No. 11	Turns on when unit No. 11 is in the RUN mode. Turns off when unit No. 11 is in the PROG. mode.
R909B		Unit No. 12	Turns on when unit No. 12 is in the RUN mode. Turns off when unit No. 12 is in the PROG. mode.
R909C		Unit No. 13	Turns on when unit No. 13 is in the RUN mode. Turns off when unit No. 13 is in the PROG. mode.
R909D		Unit No. 14	Turns on when unit No. 14 is in the RUN mode. Turns off when unit No. 14 is in the PROG. mode.
R909E		Unit No. 15	Turns on when unit No. 15 is in the RUN mode. Turns off when unit No. 15 is in the PROG. mode.
R909F		Unit No. 16	Turns on when unit No. 16 is in the RUN mode. Turns off when unit No. 16 is in the PROG. mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.
When the system registers $46=\mathrm{K} 1$, PC link 1 for the link unit with a smaller slot No. and PC link 0 for one with a larger slot No.

FP2/FP2SH/FP10SH

Address	Name	Description
R9100	IC memory card installation flag (Available PLC: FP2SH/ FP10SH)	Monitors whether the IC memory card is installed or not: - on: IC memory card is installed. - off: IC memory card is not installed.
R9101 (*Note)	IC memory card backup battery flag 1 (Available PLC: FP2SH/ FP10SH)	Monitors the voltage drop condition for the IC memory card as: - on: Data in the IC memory card cannot be guaranteed. - off: Data in the IC memory card can be maintained.
R9102 (*Note)	IC memory card backup battery flag 2 (Available PLC: FP2SH/ FP10SH)	Monitors the voltage drop condition for the IC memory card as: FP2SH: - on: Battery charge or replacement is required. - off: Battery charge or replacement is not required. FP10SH: - on: Battery replacement is required. - off: Battery replacement is not required.
R9103	IC memory card protect switch flag (Available PLC: FP2SH/ FP10SH)	Monitors the protective condition of the IC memory card as: - on: The protect switch is not in the write-protected (WP) position. - off: The protect switch is in the write-protected (WP) position.
R9104	IC memory card access switch flag (Available PLC: FP2SH/ FP10SH)	Monitors the condition of the IC memory card access enables switch as: - on (access enabled): The access enable switch is in the on position. - off (access disabled): The access enable switch is in the off position.
R9105 to R910F	Not used	-

Note) The IC memory card backup battery condition can be judged using special internal relays R9101 and R9102 as follows:

R9101	R9102	IC memory card condition
OFF	OFF	Not battery charge (replacement) required.
ON	OFF	Charge (replace) backup battery. The data in the IC memory card is maintained.
ON	ON	The data in the IC memory card cannot be maintained. Charge (replace) backup battery.

11.1.3 Special Data Registers for FP2/FP2SH/FP10SH/FP3

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9000	DT90000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs. Monitor the error code using decimal display.	A	N/A
DT9001	DT90001	Not used		N/A	N/A
DT9002	DT90002	Communication error of MEWNET-TR master unit (slot No. 0 to 15) (Available PLC: FP3/FP10SH)	The slot number, where an erroneous unit is installed, can be monitored here. " 1 " (on) is set in the bit position corresponding to the slot number when one of the errors below id detected. Communication error MEWNET-TR master unit When a communication error occurs at the MEWNET-TR master unit, the bit corresponding to the slot no. of the unit will be set on " 1 ". Monitor using binary display. (1: erroneous MEWNET-TR master unit, 0: normal) Position of abnormal I/O slot When an error occurs at an I/O unit, the bit corresponding to the slot of the unit will be set on " 1 ". Monitor using binary display. (1: error, 0: normal)	A	N/A
		Position of abnormal I/O slot (slot No. 0 to 15) (Available PLC: FP2IFP2SH)			
DT9003	DT90003	$\begin{array}{\|l\|} \hline \text { Communication } \\ \text { error of } \\ \text { MEWNET-TR } \\ \text { master unit (slot } \\ \text { No. } 16 \text { to 31) } \\ \text { (Available PLC: } \\ \text { FP3/FP10SH) } \\ \hline \end{array}$			
		Position of abnormal I/O slot (slot No. 16 to 31) (Available PLC: FP2/FP2SH)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3					
DT9006	DT90006	Abnormal intelligent unit (slot No. 0 to 15)	When an error condition is detected in an intelligent unit, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display. (1: abnormal intelligent unit, 0 : normal intelligent unit)		
DT9007	DT90007	Abnormal intelligent unit (slot No. 16 to 31)			
DT9010	DT90010	I/O verify error unit (slot No. 0 to 15)	When the state of installation of an I/O unit has changed since the power was turned on, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display. (1: error, 0: normal)		
DT9011	DT90011	I/O verify error unit (slot No. 16 to 31)		A	N/A
DT9014	DT90014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR)/P105 (PBSR) or f106 (BSL)/P106 (PBSL) instruction is executed.		
DT9015	DT90015	Auxiliary register for	The divided remainder (16-bit) is stored in DT9015/DT90015 when F32 (\%)/P32 (P\%) or F52(B\%)/P52 (PB\%) instruction is executed. The divided remainder (32-bit) is stored		
DT9016	DT90016	operation	in DT9015 and DT9016/DT90015 and DT90016 when F33 (D\%)/P33 (PD\%) or F53(DB\%)/P53 (PDB\%) instruction is executed.		
DT9017	DT90017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display. FP2SH: When the higher byte of DT90257 is H 2 , the error occurs in the 2nd program block. In case of the 1st program block, it is H 1 .		

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9018	DT90018	Operation error address (non-hold)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the addresses 0 . Monitor the address using decimal display. FP2SH: When the higher byte of DT90257 is H 2 , the error occurs in the 2nd program block. In case of the 1st program block, it is H 1 .	A	N/A
DT9019	DT90019	2.5 ms ring counter	The data stored here is increased by one every 2.5 ms (H0 to HFFFF) Difference between the values of the two points (absolute value) $\times 2.5 \mathrm{~ms}=$ Elapsed time between the two points.		
DT9020	-	Maximum value of program (Available PLC: FP3)	The last address of sequence program area set in system register 0 is stored.	N/A	N/A
-	DT90020	Display of program capacity (Available PLC: FP10SH)	The program capacity is stored in decimal. Example: K30: approx. 30 K steps K60: approx. 60 K steps (with memory expansion)		
		Display of program capacity (Available PLC: FP2)	The program capacity is stored in decimal. Example: K16: approx. 16 K steps (K15870) K32: approx. 32 K steps (with memory expansion)		
DT9021 (*Note)	-	Maximum value of file register (Available PLC: FP3)	The maximum (last) address of the file registers available are stored in here.		
-	DT90021 (*Note)	Maximum value of file register (Available PLC: FP2/FP10SH)	The maximum (last) address of the file registers available are stored in here.		

Note) Used by the system.

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions		Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$					
DT9022	DT90022	Scan time (current value)	The current scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 Example: K50 indicates 5 ms .	Scan time display is only possible in RUN mode, and shows the		
DT9023	DT90023	Scan time (minimum value)	The minimum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 Example: K50 indicates 5 ms .	operation cycle time. The maximum and minimum values are cleared		
DT9024	DT90024	Scan time (maximum value)	The maximum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 Example: K125 indicates 12.5 ms .	the mode is switched between RUN mode and PROG. mode.	A	N/A
DT9025 (*Note)	DT90025	Mask condition monitoring register for interrupt unit initiated interrupts (INT 0 to 15) (*FP2: Not used)	The mask conditions of int initiated interrupts using IC can be monitored here. M binary display. 0 : interrupt disabled (mask 1: interrupt enabled (unma	rrupt unit TL instruction nitor using ed) sked)		
DT9026 (*Note)	DT90026	Mask condition monitoring register for interrupt unit initiated interrupts (INT 16 to 23) (*FP2: Not used)	The mask conditions of int initiated interrupts using IC can be monitored here. M binary display. 0 : interrupt disabled (mask 1: interrupt enabled (unma	errupt unit TL instruction nitor using ed) sked)		
DT9027 (*Note)	DT90027	Periodical interrupt interval (INT24)	The value set by ICTL instruch stored. KO: periodical interrupt is n K1 to K3000: 10 ms to 30 s 1.5s	uction is ot used. or 0.5 ms to		

Note) Used by the system.

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
DT9028 (*Note)	DT90028	Sample trace interval	The value registered using programming tool software is stored. - K0: sampling triggered by F155 (SMPL)/P155 (PSMPL) instruction - K1 to K3000 (x 10ms): 10 ms to 30s	A	N/A
$\begin{aligned} & \hline \text { DT9029 } \\ & \text { (*Note) } \\ & \hline \end{aligned}$	DT90029	Break address	The address (K constant) of a break in a test run is stored.		
DT9030 (*Note)	DT90030	Message 0	The contents of the specified message are stored in these special data registers when F149 (MSG)/P149 (PMSG) instruction is executed.		
DT9031 (*Note)	DT90031	Message 1			
DT9032 (*Note)	DT90032	Message 2			
DT9033 (*Note)	DT90033	Message 3			
DT9034 (*Note)	DT90034	Message 4			
DT9035 (*Note)	DT90035	Message 5			
DT9036	DT90036	$\begin{aligned} & \hline \text { F152 (RMRD)/ } \\ & \text { P152 (PRMRD) } \\ & \text { and } \\ & \text { F153 (RMWT)/ } \\ & \text { P153 (PRMWT) } \\ & \text { instructions end } \\ & \text { code } \end{aligned}$	The error code is stored here if F152 (RMRD)/P152 (PRMRD) or F153 (RMWT)/P153 (PRMWT) instruction was executed abnormally. When the instruction was successfully executed, " 0 " is stored.	A	N/A
		Abnormal unit display	If an abnormal unit is installed to the backplane, the slot number of that unit will be stored. Monitor using decimal display.		
DT9037	DT90037	Work 1 for F96 (SRC)/ P96 (PSRC) instructions	The number of data that match the searched data is stored here when F96 (SRC)/P96 (PSRC) instruction is executed.	A	A
DT9038	DT90038	Work 2 for F96 (SRC)/ P96 (PSRC) instructions	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC)/P96 (PSRC) instruction is executed.		
DT9039	DT90039	$\begin{aligned} & \hline \text { F145 (SEND)I } \\ & \text { P145 (PSEND) } \\ & \text { and } \\ & \text { F146 (RECV)I } \\ & \text { P146 (PRECV) } \\ & \text { instructions end } \\ & \text { code } \\ & \hline \end{aligned}$	The error code is stored here if F145 (SEND)/P145 (PSEND) or F146 (RECV)/ P146 (PRECV) instruction was executed abnormally. When the instruction was successfully executed, " 0 " is stored.	A	N/A

Note) Used by the system.

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions			Reading	Writing
FP3	$\begin{aligned} & \text { FP2l } \\ & \text { FP2SH } \\ & \text { FP10SH } \end{aligned}$						
DT9053	DT90053	Real-Time Clock (Clock/Calendar) monitor (hour/minute)	Hour and Clock(Clock This data overwritten \qquad \qquad Hour da H00 to H23	minute data of ck/Calendar) ar is read-only data. n.	the Real-Time e stored here. a. It cannot be 8 bits \square e data 459 (BCD)	A	N/A
DT9054	DT90054	Real-Time Clock (Clock/Calendar) monitor and setting (minute/second)	The year, second and the calend Real-Time will opera 2099 and	month, day, ho day-of-the-we dar timer is stored Clock(Clock/C te correctly thro	ur, minute, eek data for ed. The built-in alendar) ough the year		
DT9055	DT90055	Real-Time Clock (Clock/Calendar) monitor and setting (day/hour)	The Real- (Clock/Cal set) by wr programm	supports leap y Time Clock lendar) can be iting a value usi ing tool softwar	years. set (the time ing a e or a program		
DT9056	DT90056	Real-Time Clock (Clock/Calendar) monitor and setting (year/month)	instruction	Higher 8 bits Minute data H00 to H59 (BCD		A	A
DT9057	DT90057	Real-Time Clock (Clock/Calendar) monitor and setting (day-of-the-week)	DT90054 DT9055/ DT90055 DTT9056/ DT90056 DT9057// DT90057	H00 to H59 (BCD) Day data H01 to H31 (BCD) Year data H00 to H99 (BCD) -	H00 to H59 (BCD) Hour data H00 to H23 (BCD) Month data H01 to H12 (BCD) Day-of the-week data H00 to H06 (BCD)		

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

	ress				
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$	Name	Descriptions	Reading	Writing
DT9058	DT90058	Real-Time Clock (Clock ICalendar) setting and 30 seconds correction	The Real-Time Clock(Clock/Calendar) is adjusted as follows. When setting the Real-Time Clock (Clock/Calendar) by program By setting the highest bit of DT9058/DT90058 to 1, the time becomes that written to DT9054 to DT9057/DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT9058/DT90058 is cleared to 0 . (Cannot be performed with any instruction other than F0 (MV) instruction.) <Example> Set the time to 12:00:00 on the $5^{\text {th }}$ day when the X0 turns on. If you changed the values of DT9054 to DT9057/DT90054 to DT90057 with programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT9058/DT90058. When the correcting times less than 30 seconds- By setting the lowest bit of DT9058/DT90058 to 1 , the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT9058/DT90058 is cleared to 0 . <Example> Correct to 0 seconds with X0 turns on. $\left.\left\|\begin{array}{\|l\|} \mathrm{XO} \end{array} \mathrm{DF}\right\rangle\left[\begin{array}{ll} \text { FO MV. H } & \text { 1, DT9058 } \end{array}\right] \right\rvert\, \begin{aligned} & \text { Correct ta } \\ & 0 \text { second. } \end{aligned}$ At the time of correction, if between 0 and 29 seconds, it will be moved down, and if the between 30 and 59 seconds, it will be moved up. In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 0 second; and, if the time was 5 minutes 35 seconds, it will become 6 minutes 0 second.	A	A

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP1OSH } \end{gathered}$				
DT9059 (*Note)	DT90059	Serial communication error code	The system uses this as a communication status when communication error occurs.	A	N/A
DT9060	DT90060	Step Iadder process (0 to 15)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on "1". Monitor using binary display. (0: not-executing, 1: executing) Example:	A	A
DT9061	DT90061	Step Iadder process (16 to 31)			
DT9062	DT90062	Step ladder process (32 to 47)			
DT9063	DT90063	Step Iadder process (48 to 63)			
DT9064	DT90064	Step ladder process (64 to 79)			
DT9065	DT90065	Step ladder process (80 to 95)			
DT9066	DT90066	Step ladder process (96 to 111)			
DT9067	DT90067	Step ladder process (112 to 127)			
DT9068	DT90068	Step ladder process (128 to 143)			
DT9069	DT90069	Step ladder process (144 to 159)	Sit position 15 12 11 8 7 4 3		
DT9070	DT90070	Step ladder process (160 to 175)	Since bit position 0 of DT9060/DT90060 is " 1 ", step ladder process 0 is executing. A programming tool software can be used to write data.		
DT9071	DT90071	Step ladder process (176 to 191)			
DT9072	DT90072	Step ladder process (192 to 207)			
DT9073	DT90073	Step ladder process (208 to 223)			
DT9074	DT90074	Step ladder process (224 to 239)			
DT9075	DT90075	Step ladder process (240 to 255)			
DT9076	DT90076	Step ladder process (256 to 271)			
DT9077	DT90077	Step ladder process (272 to 287)			

Note) Used by the system.

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
DT9078	DT90078	Step ladder process (288 to 303)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on "1". Monitor using binary display. (0: not-executing, 1: executing) Example:	A	A
DT9079	DT90079	Step ladder process (304 to 319)			
DT9080	DT90080	Step ladder process (320 to 335)			
DT9081	DT90081	Step ladder process (336 to 351)			
DT9082	DT90082	Step ladder process (352 to 367)			
DT9083	DT90083	Step ladder process (368 to 383)			
DT9084	DT90084	Step ladder process (384 to 399)			
DT9085	DT90085	Step ladder process (400 to 415)			
DT9086	DT90086	Step ladder process (416 to 431)			
DT9087	DT90087	Step ladder process (432 to 447)			
DT9088	DT90088	Step ladder process (448 to 463)			
DT9089	DT90089	Step ladder process (464 to 479)	Example:		
DT9090	DT90090	Step ladder process (480 to 495)	Since bit position 0 of DT9080/DT90080 is " 1 ", step ladder process 320 is executing. A programming tool software can be used to write data.		
DT9091	DT90091	Step ladder process (496 to 511)			
DT9092	DT90092	Step ladder process (512 to 527)			
DT9093	DT90093	Step ladder process (528 to 543)			
DT9094	DT90094	Step ladder process (544 to 559)			
DT9095	DT90095	Step ladder process (560 to 575)			
DT9096	DT90096	Step ladder process (576 to 591)			
DT9097	DT90097	Step ladder process (592 to 607)			
DT9098	DT90098	Step ladder process (608 to 623)			
DT9099	DT90099	Step ladder process (624 to 639)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP1OSH } \end{gathered}$				
DT9100	DT90100	Step ladder process (640 to 655)	Indicates the startup condition of the step ladder process. When the process starts up, the bit corresponding to the process number turns on " 1 ". Monitor using binary display. (0: not-executing, 1: executing) Example:	A	A
DT9101	DT90101	Step ladder process (656 to 671)			
DT9102	DT90102	Step ladder process (672 to 687)			
DT9103	DT90103	Step ladder process (688 to 703)			
DT9104	DT90104	Step ladder process (704 to 719)			
DT9105	DT90105	Step ladder process (720 to 735)			
DT9106	DT90106	Step ladder process (736 to 751)			
DT9107	DT90107	Step ladder process (752 to 767)			
DT9108	DT90108	Step ladder process (768 to 783)			
DT9109	DT90109	Step ladder process (784 to 799)			
DT9110	DT90110	Step ladder process (800 to 815)			
DT9111	DT90111	Step ladder process (816 to 831)			
DT9112	DT90112	Step ladder process (832 to 847)			
DT9113	DT90113	Step ladder process (848 to 863)			
DT9114	DT90114	Step ladder process (864 to 879)	Since bit position 0 of DT9100/DT90100 is " 1 ", step ladder process 640 is executing. A programming tool software can be used to write data.		
DT9115	DT90115	Step ladder process (880 to 895)			
DT9116	DT90116	Step ladder process (896 to 911)			
DT9117	DT90117	$\begin{aligned} & \text { Step ladder pro- } \\ & \text { cess (} 912 \text { to } 927 \text {) } \end{aligned}$			
DT9118	DT90118	Step ladder process (928 to 943)			
DT9119	DT90119	Step ladder process (944 to 959)			
DT9120	DT90120	Step ladder process (960 to 975)			
DT9121	DT90121	Step ladder process (976 to 991)			
DT9122	DT90122	Step ladder process (992 to 999) (higher byte is not used.)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2l } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9123	DT90123	Not used	-	N/A	N/A
DT9124	DT90124	Not used	-		
DT9125	DT90125	Not used	-		
DT9126 (*Note)	DT90126	Forced on/off operating station display	This displays the unit number that has executed forced on/off operation.	A	N/A
DT9127 (*Note)	DT90127	MEWNET-F system remote I/O service time	The number of times, which MEWNET-F remote I/O service was performed by each master, is stored.		
DT9128 (*Note)	DT90128		The number of times, which MEWNET-F remote I/O service was performed by each master, is stored.		
DT9129	DT90129	Not used	-	N/A	N/A
DT9130	DT90130	Not used	-		
DT9131	DT90131	MEWNET-F (remote I/O) slave stations abnormality checking (for selecting the display contents and master of DT9132 to DT9135/DT90132 to DT90135)	The contents displayed by DT9132 to DT9135/DT90132 to DT90135 will change depending on the contents of stored in DT9131/DT90131. Use the programming tools software to write the settings for what you want to display (this can also be done with the F0 (MV) move instruction). Set the code (H 0 or H 1) specifying the display contents in the higher 8 bits and set the code (H 0 to H 3) specifying the display master in the lower 8 bits.	A	N/A

Note) Used by the system.

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Note1) Used by the system.
Note2) When the system register $46=K 0$, First: PC(PLC) link 0, second: PC(PLC) link 1
When the system register $46=\mathrm{K} 1$, First: $\mathrm{PC}(\mathrm{PLC})$ link 1, second: $\mathrm{PC}(\mathrm{PLC})$ link 0
Note3) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP1OSH } \end{gathered}$				
DT9148 (*Note1)	DT90148	MEWNET- WI-P PC(PLC) link status [PC(PLC) link 1 (W/P)] (*Note2, 3)	The number of times the receiving operation is performed (counted using ring counter)	N/A	N/A
DT9149 (*Note1)	DT90149		The current interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9150 (*Note1) D	DT90150		The minimum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9151 (*Note1)	DT90151		The maximum interval between two receiving operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9152 (*Note1)	DT90152		The number of times the sending operation is performed (counted using ring counter)		
DT9153 (*Note1)	DT90153		The current interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
$\begin{aligned} & \text { DT9154 } \\ & \text { (*Note1) } \end{aligned}$	DT90154		The minimum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
$\begin{aligned} & \text { DT9155 } \\ & \text { (*Note1) } \end{aligned}$	DT90155		The maximum interval between two sending operations: value in the register $\times 2.5 \mathrm{~ms}$		
DT9156 (*Note1)	DT90156	MEWNET-WI-P PC(PLC)	Area used for measurement of receiving interval.		
DT9157 (*Note1)	DT90157	[PC(PLC) link 0 (WIP)] (*Note2, 3)	Area used for measurement of sending interval.		
DT9158 (*Note1)	DT90158	MEWNET-WI-P PC(PLC)	Area used for measurement of receiving interval.		
DT9159 (*Note1)	DT90159	[PC(PLC) link 1 (W/P)] (*Note2, 3)	Area used for measurement of sending interval.		

Note1) Used by the system.
Note2) When the system register $46=$ K0, First: PC(PLC) link 0, second: PC(PLC) link 1 When the system register $46=\mathrm{K} 1$, First: $\mathrm{PC}(\mathrm{PLC})$ link 1, second: $\mathrm{PC}(\mathrm{PLC})$ link 0
Note3) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9160	DT90160	Link unit no. [W/P link 1] (*Note)	Stores the unit No. of link 1.		
DT9161	DT90161	Error flag [W/P link 1] (*Note)	Stores the error flag of link 1.		
DT9162	DT90162	Link unit no. [W/P link 2] (*Note)	Stores the unit No. of link 2.		
DT9163	DT90163	Error flag [W/P link 2] (*Note)	Stores the error flag of link 2.		
DT9164	DT90164	Link unit no. [W/P link 3] (*Note)	Stores the unit No. of link 3.		
DT9165	DT90165	Error flag [W/P link 3] (*Note)	Stores the error flag of link 3.		
-	DT90166	Link unit no. [W/P link 4] Available PLC: FP2SH, FP10SH	Stores the unit No. of link 4.	A	N/A
-	DT90167	Error flag [W/P link 4] Available PLC: FP2SH, FP10SH	Stores the error flag of link 4.		
-	DT90168	Link unit no. [W/P link 5] Available PLC: FP2SH, FP10SH	Stores the unit No. of link 5.		
-	DT90169	Error flag [W/P link 5] Available PLC: FP2SH, FP10SH	Stores the error flag of link 5.		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9170	DT90170	MEWNET- WI-P link status [W/P link 1] (*Note)	Station number, where the send area address for the PC link is overlapped with this station, is stored here.	A	N/A
DT9171	DT90171		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9172	DT90172		Counts how many times a token is lost.		
DT9173	DT90173		Counts how many times two or more tokens are detected.		
DT9174	DT90174		Counts how many times a signal is lost.		
DT9175	DT90175		Counts how many times a synchronous abnormality is detected.		
DT9176	DT90176		Send NACK		
DT9177	DT90177		Send NACK		
DT9178	DT90178		Send WACK		
DT9179	DT90179		Send WACK		
DT9180	DT90180		Send answer		
DT9181	DT90181		Send answer		
DT9182	DT90182		Unidentified command		
DT9183	DT90183		Counts how many times a parity error is detected.		
DT9184	DT90184		End code receiving error		
DT9185	DT90185		Format error		
DT9186	DT90186		Not support error		
DT9187	DT90187		Self-diagnostic result		
DT9188	DT90188		Counts how many times loop change is detected. Available PLC: FP3, FP10SH		
DT9189	DT90189		Counts home many times link error is detected.		
DT9190	DT90190		Counts how many times main loop break is detected. Available PLC: FP3, FP10SH		
DT9191	DT90191		Counts how many times sub loop break is detected. Available PLC: FP3, FP10SH		
DT9192	DT90192		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9193	DT90193		Loop operation mode Available PLC: FP3, FP10SH		
DT9194	DT90194		Loop input status Available PLC: FP3, FP10SH		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2l } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
DT9195	DT90195	MEWNET-H link status/ link unit number (H link 1) (*Note1)	The link status for the MEWNET-H link is monitored as:		
DT9196	DT90196	MEWNET-H link status/ link unit number (H link 2) (*Note1)	The link status for the MEWNET-H link is monitored as:	A	N/A
DT9197	DT90197	MEWNET-H link status/ link unit number (H link 3) (*Note1)	The link status for the MEWNET-H link is monitored as:		
DT9198	DT90198	Not used	-		
DT9199	DT90199	Not used	-		
DT9200	DT90200		Station number, where the send area address for the PC(PLC) link is overlapped with this station, is stored here.		
DT9201	DT90201		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9202	DT90202		Counts how many times a token is lost.		
DT9203	DT90203	MEWNET- W/-P link	Counts how many times two or more tokens are detected.		
DT9204	DT90204	status	Counts how many times a signal is lost.	A	N/A
DT9205	DT90205	[W/P link 2] (*Note2)	Counts how many times a synchronous abnormality is detected.		
DT9206	DT90206		Send NACK		
DT9207	DT90207		Send NACK		
DT9208	DT90208		Send WACK		
DT9209	DT90209		Send WACK		
DT9210	DT90210		Send answer		
DT9211	DT90211		Send answer		
DT9212	DT90212		Unidentified command		

Note1) For FP10SH/FP3, using H mode
For FP2/FP2SH, using W2 mode
Note2) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2l } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
DT9213	DT90213	MEWNET- WI-P link status [W/P link 2] (*Note)	Counts how many times a parity error is detected.	A	N/A
DT9214	DT90214		End code receiving error		
DT9215	DT90215		Format error		
DT9216	DT90216		Not support error		
DT9217	DT90217		Self-diagnostic result		
DT9218	DT90218		Counts how many times loop change is detected. Available PLC: FP3, FP10SH		
DT9219	DT90219		Counts home many times link error is detected.		
DT9220	DT90220		Counts how many times main loop break is detected. Available PLC: FP3, FP10SH		
DT9221	DT90221		Counts how many times sub loop break is detected. Available PLC: FP3, FP10SH		
DT9222	DT90222		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9223	DT90223		Loop operation mode Available PLC: FP3, FP10SH		
DT9224	DT90224		Loop input status Available PLC: FP3, FP10SH		
DT9225	DT90225	Not used	-		
DT9226	DT90226	Not used	-		
DT9227	DT90227	Not used	-		
DT9228	DT90228	Not used	-		
DT9229	DT90229	Not used	-		
DT9230	DT90230	MEWNET- WI-P link status [W/P link 3] (*Note)	Station number, where the send area address for the PC link is overlapped with this station, is stored here.	A	N/A
DT9231	DT90231		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9232	DT90232		Counts how many times a token is lost.		
DT9233	DT90233		Counts how many times two or more tokens are detected.		
DT9234	DT90234		Counts how many times a signal is lost.		
DT9235	DT90235		Counts how many times a synchronous abnormality is detected.		
DT9236	DT90236		Send NACK		
DT9237	DT90237		Send NACK		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
DT9238	DT90238	MEWNET- WI-P link status [W/P link 3] (*Note)	Send WACK	A	N/A
DT9239	DT90239		Send WACK		
DT9240	DT90240		Send answer		
DT9241	DT90241		Send answer		
DT9242	DT90242		Unidentified command		
DT9243	DT90243		Counts how many times a parity error is detected.		
DT9244	DT90244		End code receiving error		
DT9245	DT90245		Format error		
DT9246	DT90246		Not support error		
DT9247	DT90247		Self-diagnostic result		
DT9248	DT90248		Counts how many times loop change is detected. Available PLC: FP3, FP10SH		
DT9249	DT90249		Counts home many times link error is detected.		
DT9250	DT90250		Counts how many times main loop break is detected. Available PLC: FP3, FP10SH		
DT9251	DT90251		Counts how many times sub loop break is detected. Available PLC: FP3, FP10SH		
DT9252	DT90252		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9253	DT90253		Loop operation mode Available PLC: FP3, FP10SH		
DT9254	DT90254		Loop input status Available PLC: FP3, FP10SH		
-	DT90255	Monitoring tool port station No. (Available PLC: FP2SH/ FP10SH)	Station number BCD (H1 to H 32) set for tool port is stored here.	A	N/A
-	DT90256	Monitoring COM port station No. (Available PLC: FP2SH/ FP10SH)	Station number BCD (H1 to H32) set for tool port is stored here.		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
-	DT90257	Operation error program No. (hold) (Available PLC: FP2SH/ FP10SH)	An Operation error program block number is stored (higher byte) here when an operation error is detected. Program block number - H1: In the first program block - H2: In the 2nd program block		
-	DT90258	Operation error program No. (non-hold) (Available PLC: FP2SH/ FP10SH)	The program block number for the latest operation error is stored here each time an operation error is detected. Program block number - H1: In the first program block - H2: In the 2nd program block		
-	DT90259	Break occurrence program number (Available PLC: FP2SH/ FP10SH)	The program block number where the BRK instruction occurred is stored here. Program block number - H1: In the first program block - H2: In the 2nd program block		
-	DT90260	Type of IC memory card (Available PLC: FP2SH/ FP10SH)	Type of IC memory card is monitored here as: - H5: Flash-EEPROM type IC memory card - H6: SRAM type IC memory card - H506: For FP10SH, flash- EEPROM/SRAM mixed type IC memory card - H6: No archival information is stored - H6: No data is written - Other than above: Erroneous condition (self-diagnostic error code E56)	A	N/A
-	DT90261	Capacity of IC memory card 1 (Available PLC: FP2SH/ FP10SH)	The capacity of IC memory card is stored in units of KB. If Flash-EEPROM/SRAM mixed type IC memory card is used, SRAM capacity is stored.		
-	DT90262	Capacity of IC memory card 2 (Available PLC: FP2SHI FP10SH)	If Flash-EEPROM/SRAM mixed type IC memory card is used, flash-EEPROM capacity is stored in units of KB.		
-	DT90263	File register bank (current value) (Available PLC: FP2SH)	The current value of file register bank is stored here.		

Note) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH
For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
-	DT90264	File register bank (shelter number) (Available PLC: FP2SH)	The shelter number of the file register bank is stored here.	A	N/A
-	DT90265	Free compile memory capacity (Available PLC: FP2SH FP10SH)	Free capacity of compile memory is stored here. If the program memory is 120 K steps, the capacity of 1 st program block is stored.		
-	DT90266	Free compile memory capacity for program block 2 (Available PLC: FP2SHI FP10SH)	If the program memory is 120 K steps, free capacity of program block 2 compile memory is stored here.		
-	DT90267	Not used	-	N/A	N/A
-	DT90268	Index register bank (current value) (Available PLC: FP2SH/ FP10SH)	The current value of index register bank is stored here.	A	A
-	DT90269	Index register bank (shelter number) (Available PLC: FP2SHI FP10SH)	The shelter number of index register bank is stored here.		
-	DT90399	Not used	-	N/A	N/A
-	DT90400	Number of the error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The total of the error alarm relay which went on is stored here. (Max. 500) To reset all data in the error alarm buffer, use an RST instruction and DT90400. ${ }^{\mathrm{X} 1}$ НН(DF) - R DT90400	A	N/A

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3					
-	DT90401	First error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The first error alarm relay number which went on is stored. The error has been reset by executing a RST instruction. Example 1: Using RST instruction Example 2: Using RST instruction and DT90401		
-	DT90402	Second error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90403	Third error alarm relay which went on (Available PLC: FP2SHI FP10SH)		A	N/A
-	DT90404	Forth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.		
-	DT90405	Fifth error alarm relay which went on (Available PLC: FP2SHI FP10SH)			
-	DT90406	Sixth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90407	Seventh error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \\ \hline \end{gathered}$				
-	DT90408	Eighth error alarm relay which went on (Available PLC: FP2SH FP10SH)			
-	DT90409	Ninth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90410	Tenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90411	Eleventh error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only. Relay number (E12) to reset	A	N/A
-	DT90412	Twelfth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90413	Thirteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90414	Fourteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
-	DT90415	Fifteenth alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.	A	N/A
-	DT90416	Sixteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90417	Seventeenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90418	Eighteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90419	Nineteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address		Name	Descriptions	Reading	Writing
FP3	$\begin{gathered} \text { FP2I } \\ \text { FP2SH } \\ \text { FP10SH } \end{gathered}$				
-	DT90420	Time at which the first error alarm relay (DT90401) went on (for minute and second data) (Available PLC: FP2SH/ FP10SH)	The time (minute and second) data at which the first error alarm relay in DT90401 went on is stored.		
-	DT90421	Time at which the first error alarm relay (DT90401) went on (for day and hour data) (Available PLC: FP2SH/ FP10SH)	The time (day and hour) data at which the first error alarm relay in DT90401 went on is stored.	A	N/A
	DT90422	Time at which the first error alarm relay (DT90401) went on (for year and month data) (Available PLC: FP2SH/ FP10SH)	The time (year and month) data at which the first error alarm relay in DT90401 went on is stored.		

11.2 Table of Basic Instructions

Name	Boolean	Symbol	Description	$\begin{aligned} & \text { m } \\ & \text { n } \\ & \stackrel{2}{4} \\ & \dot{\psi} \end{aligned}$		$\begin{array}{\|l} \text { ⿸ㅡㅇ } \\ \text { 足 } \end{array}$	W	$\begin{aligned} & \times \\ & \text { ㅈ́ㄴ } \end{aligned}$	N		
Sequence basic instructions											
Start	ST	$\stackrel{\text { Premer }}{\text {, }}$	Begins a logic operation with a Form A (normally open) contact.	$\begin{gathered} \hline 1 \\ (2) \\ \hline \end{gathered}$	O	O	0	O	0	0	
Start Not	STI		Begins a logic operation with a Form B (normally closed) contact.	$\begin{gathered} 1 \\ 1 \\ (2) \\ \hline \end{gathered}$	\bigcirc	O	O	O	0	0	
Out	OT	$\stackrel{\text { YRLLE }}{[j]}$	Outputs the operated result to the specified output.	$\begin{aligned} & \hline 1 \\ & 1 \\ & (2) \\ & \hline \end{aligned}$	O	O	0	O	O	0	
Not	1	-	Inverts the operated result up to this instruction.	1	\bigcirc	O	O	\bigcirc	O	0	
AND	AN	$\xrightarrow[\mid]{\text { X,Y, }, T, C, L, P, E, E}$	Connects a Form A (normally open) contact serially.	1 (2)	0	\bigcirc	O	\bigcirc	O	0	
AND Not	AN/	X,Y,R,T,C,L,P,P,	Connects a Form B (normally closed) contact serially.	$\begin{gathered} 1 \\ 1 \\ (2) \\ \hline \end{gathered}$	0	O	O	O	O	0	
OR	OR	$\stackrel{\text { X,Y,R,T,C,L,P,E }}{\stackrel{ }{1}}$	Connects a Form A (normally open) contact in parallel.	$\begin{gathered} \hline 1 \\ (2) \\ \hline \end{gathered}$	\bigcirc	O	O	O	O	0	
OR Not	ORI	$\begin{aligned} & \text { XYR,T,C,P, } \\ & \hline \end{aligned}$	Connects a Form B (normally closed) contact in parallel.	$\begin{aligned} & \hline 1 \\ & 1 \\ & (2) \\ & \hline \end{aligned}$	0	O	0	0	O	0	
Leading edge start	ST \uparrow	$\stackrel{\text { X,Y,R,T,C,L,P,E }}{\mid \uparrow \Vdash}$	Begins a logic operation only for one scan when the leading edge of the trigger is detected.	2	\times	0	\star_{\star}	Δ_{*}	0	0	
Trailing edge start	ST \downarrow	$\underbrace{\mathrm{X}, \mathrm{Y}, \mathrm{R}, \mathrm{~T}, \mathrm{C}, \mathrm{~L}, \mathrm{P}, \mathrm{E}}$	Begins a logic operation only for one scan when the trailing edge of the trigger is detected.	2	\times	0	Δ_{*}	Δ_{*}	0	0	
Leading edge AND	AN \uparrow	$\underbrace{X_{1}, Y_{1}, T, C, L_{1}, P, E}_{\\| \uparrow}$	Connects a Form A (normally open) contact serially only for one scan when the leading edge of the trigger is detected.	2	\times	0	Δ_{*}	Δ_{*}	0	0	
Trailing edge AND	AN \downarrow	$\underbrace{}_{\downarrow, Y_{1}, R_{1}, C, L, P, E}$	Connects a Form A (normally open) contact serially only for one scan when the trailing edge of the trigger is detected.	2	\times	0	${ }_{*}^{\star} 2$	$\stackrel{\star}{\star}$	0	0	
Leading edge OR	OR \uparrow		Connects a Form A (normally open) contact in parallel only for one scan when the leading edge of the trigger is detected.	2	\times	0	$\Delta_{*}{ }^{2}$	Δ_{*}	0	\bigcirc	
Trailing edge OR	OR \downarrow	$\xrightarrow[\downarrow, Y, R, T, L, P, E]{X_{i}}$	Connects a Form A (normally open) contact in parallel only for one scan when the trailing edge of the trigger is detected.	2	\times	O	$\stackrel{\Delta}{\star}$	\star_{\star}	0	0	
Leading edge out	OT \uparrow	$\begin{gathered} P \\ {[\uparrow]} \end{gathered}$	Outputs the operated result to the specified output only for one scan when leading edge of the trigger is detected. (for pulse relay)	2	\times	\times	\times	\times	0	\bigcirc	
Trailing edge out	OT \downarrow	$\stackrel{P}{[\downarrow}-\downarrow]$	Outputs the operated result to the specified output only for one scan when trailing edge of the trigger is detected. (for pulse relay)	2	\times	\times	\times	\times	0	\bigcirc	
Alternative out	ALT	$\underset{\langle A\rangle}{\substack{Y, R, E}}$	Inverts the output condition (on/off) each time the leading edge of the trigger is detected.	3	\times	O	O	O	0	0	
AND stack	ANS	W	Connects the multiple instruction blocks serially.	1	0	0	0	0	0	0	
OR stack	ORS	$\begin{aligned} & \longmapsto \longmapsto \vdash \\ & \longmapsto \vdash \vdash \end{aligned}$	Connects the multiple instruction blocks in parallel.	1	O	O	0	O	0	0	

: Available, $\times:$ Not available, $\triangle:$ Not available partially
*1) The type of the devices that can be specified depends on the models.
*2) This instruction is available for FP-X Ver. 2.0 or later, and FPE Ver. 3.10 or later.
*3) In the FP2/FP2SH/10SH, when using X1280, Y1280, R1120 (special internal relay included), L1280, T256, C256 or anything beyond for the ST, ST/, OT, AN, AN/, OR and OR/ instructions, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses. For the FPE and FP-X, the number of steps varies according to the relay number to be used.

Name	Boolean	Symbol	Description	$$		둥	W	¢	N	
Push stack	PSHS		Stores the operated result up to this instruction. *2	1	O	\bigcirc	O	\bigcirc	O	\bigcirc
Read stack	RDS		Reads the operated result stored by the PSHS instruction. *2	1	\bigcirc	\bigcirc	O	O	\bigcirc	\bigcirc
Pop stack	POPS		Reads and clears the operated result stored by the PSHS instruction	1	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc
Leading edge differential	DF	- (DF) -	Turns on the contact for only one scan when the leading edge of the trigger is detected.	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Trailing edge differential	DFI	- (DF/) -	Turns on the contact for only one scan when the trailing edge of the trigger is detected.	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Leading edge differential (initial execution type)	DFI	-(DFI) -	Turns on the contact for only one scan when the leading edge of the trigger is detected. The leading edge detection is possible on the first scan.	1	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
Set	SET	$\begin{aligned} & Y, R, L, E \\ & \langle s\rangle \end{aligned}$	Output is set to and held at on.	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
Reset	RST	Y, R, L, E 〈R〉	Output is set to and held at off.	3	O	\bigcirc	-	O	\bigcirc	\bigcirc
Keep	KP	$\underset{-1}{\text { Resot }} \perp$	Outputs at set trigger and holds until reset trigger turns on.	$\begin{gathered} \hline 1 \\ (2) \\ \hline \end{gathered}$	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc
No operation	NOP	-	No operation.	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Basic function instructions										
On-delay timer	TML	$H \longmapsto\left[{ }^{T M a, n}\right]$	After set value " n " $\times 0.001$ seconds, timer contact "a" is set to on.	$\begin{gathered} 3 \\ (4) \\ \hline \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	* ${ }^{\circ}$
	TMR		After set value " n " x 0.01 seconds, timer contact "a" is set to on.	$\begin{gathered} 3 \\ (4) \\ \hline \end{gathered}$	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	* * 3
	TMX		After set value " n " $\times 0.1$ seconds, timer contact "a" is set to on.	$\begin{gathered} \hline 3 \\ (4) \\ \hline \end{gathered}$	O	\bigcirc	O	O	\bigcirc	*
	TMY		After set value " n " x 1 second, timer contact "a" is set to on.	$\begin{gathered} 4 \\ \hline(5) \\ \hline \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	- ${ }_{\text {* }}$
Auxiliary timer (16-bit)	F137 (STMR)	$\text { H HEFI37STMR s. } \stackrel{\text { YRLE }}{ }[-] \mid$	After set value " S " $\times 0.01$ seconds, the specified output and R900D are set to on.	5	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Auxiliary timer (32-bit)	F183 (DSTM)	$\text { H HEFB30STM S. } \mathrm{YRLE}[\mathrm{H} \mid$	After set value " S " $\times 0.01$ seconds, the specified output and R900D are set to on.	7	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Time constant processing	F182		Executes the filter processing for the specified input.	9	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times
Counter	CT		Decrements from the preset value "n"	3 (4)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc $*$

: Available, \times : Not available, \triangle : Not available partially
*1) The type of the devices that can be specified depends on the models.
*2) The allowable number of using the PSHS and RDS instruction depends on the models.
*3) For FP2SH, FP10SH and FP-X Ver2.0 or later, any device can be set for the setting value of counter or timer instruction.
*4) This instruction is available for FP-X Ver. 2.0 or later.
*5) In the FP2/FP2SH/FP10SH, when using Y1280, R1120 (special internal relay included), L1280 or anything beyond for the KP instruction, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses.
*6) In the FP2/FP2SH/FP10SH, when timer 256 or higher, or counter 255 or lower, is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when a timer number or counter number has an index modifier, the number of steps is the number in parentheses. For the FPI and FP-X, the number of steps varies according to the specified timer number or counter number.

Name	Boolean	Symbol	Description	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{0}{i} \\ & \stackrel{1}{U} \\ & \frac{\partial}{0} \\ & \text { L } \end{aligned}$	$\begin{aligned} & \text { 증 } \\ & \text { 문 } \end{aligned}$	W	$\begin{aligned} & x \\ & \text { x } \\ & \text { it } \end{aligned}$	N	
UPIDOWN counter	$\begin{aligned} & \hline \text { F118 } \\ & \text { (UDC) } \end{aligned}$		Increments or decrements from the preset value " S " based on up/down input.	5	O	O	\bigcirc	-	O	\bigcirc
Shift register	SR		Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	$\begin{gathered} 1 \\ (2) \\ { }^{*} 1 \end{gathered}$	\bigcirc	O	\bigcirc	O	O	\bigcirc
Left/right shift register	$\begin{aligned} & \text { F119 } \\ & \text { (LRSR) } \end{aligned}$		Shifts one bit of 16-bit data range specified by "D1" and "D2" to the left or to the right.	5	O	O	\bigcirc	O	O	\bigcirc
Control instructions										
Master control relay	MC		Starts the master control program.	2	0	O	\bigcirc	O	O	\bigcirc
Master control relay end	MCE		Ends the master control program.	2	\bigcirc	O	\bigcirc	O	O	\bigcirc
Jump Label	JP LBL	$\underset{(\text { LBL } n)}{ }$	The program jumps to the label instruction and continues from there.	$\begin{gathered} \hline 2 \\ (3) \\ * 2 \\ \\ \\ \hline \end{gathered}$	\bigcirc	O	\bigcirc	O	O	\bigcirc
Auxiliary jump Label	$\begin{aligned} & \hline \text { F19 } \\ & \text { (SJP) } \\ & \text { LBL } \end{aligned}$	$\underbrace{-1 \mapsto[\text { Fig s. s. s }]}$	The program jumps to the label instruction specified by " S " and continues from there.	3 1	\times	\times	\times	\times	O	\bigcirc
Loop Label	LOOP LBL		The program jumps to the label instruction and continues from there (the number of jumps is set in " S ").	$\begin{gathered} \hline 4 \\ (5) \\ \text { *3 } \\ \\ \hline 1 \\ \hline \end{gathered}$	0	O	\bigcirc	O	\bigcirc	\bigcirc
Break	BRK	H-bag) \|	Stops program execution when the predetermined trigger turns on in the TEST/RUN mode only.	1	\times	\times	\times	\times	0	\bigcirc

: Available, \times : Not available, \triangle : Not available partially
*1) In the FP2/FP2SH/FP10SH, when internal relay WR240 or higher is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when the specified internal relay number (word address) has an index modifier, the number of steps is the number in parentheses.
*2) In the FP2/FP2SH/FP10SH, when the number " n " in a jump instruction has an index modifier, the number of steps isthenumber in parentheses.
*3) In the FP2/FP2SH/FP10SH, when the number " n " in a loop instruction has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{0} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{y}{1} \\ & \text { ì } \\ & \text { 른 } \end{aligned}$	믕	带	$\begin{aligned} & \text { x } \\ & \text { it } \end{aligned}$	N	
End	ED	い边 H	The operation of program is ended． Indicates the end of a main program．	1	O	O	\bigcirc	O	\bigcirc	O
Conditional end	CNDE	$H \longmapsto$ CNOE \dagger	The operation of program is ended when the trigger turns on．	1	0	O	O	O	O	O
Eject	EJECT	\square（EECT）－	Adds page break for use when printing．	1	\times	O	－	O	\bigcirc	O
Step ladder instructions										
Start step	SSTP	1 － SSTPNO^{-1}	The start of program＂ n ＂for process control	3	\bigcirc	O	O	O	\bigcirc	O
Next step	NSTL	$H \longmapsto$（NsTLn）\dagger	Starts the specified process＂ n ＂and clears the process currently started． （Scan execution type）	3	0	O	O	O	O	0
	NSTP	$H \longmapsto(N S T P$ 听	Starts the specified process＂ n ＂and clears the process currently started． （Pulse execution type）	3	0	O	O	O	\bigcirc	0
Clear step	CSTP	$H \longmapsto(\operatorname{cstp})^{-1}$	Resets the specified process＂ n ＂．	3	\bigcirc	O	\bigcirc	O	\bigcirc	\bigcirc
Clear multi－ ple steps	SCLR	$\left.\dagger H^{[\text {SaRnin } 2]}\right]$	Resets multiple processes specified by ＂ n 1 ＂and＂ n 2 ＂．	5	$\begin{array}{\|} \triangle_{*} \\ \hline \end{array}$	O	O	O	O	0
Step end	STPE	\square（STPE－	End of step ladder area	1	\bigcirc	O	\bigcirc	O	O	O
Subroutine instructions										
Subroutine call	CALL	$H \longmapsto(C A L D O H$	When the trigger is on：Executes the subroutine． When the trigger is off：Not execute the subroutine．The output in the subroutine is maintained．	$\begin{gathered} 2 \\ (3) \\ \left.{ }^{2}\right) \end{gathered}$	0	O	\bigcirc	0	\bigcirc	O
Output off type subroutine call	FCAL	$H \longmapsto(F C A L n)-1$	When the trigger is on：Executes the subroutine． When the trigger is off：Not execute the subroutine．But，the output in the subroutine is cleared．	$\begin{aligned} & 4 \\ & (5) \\ & \text { (5) } \end{aligned}$	\times	\times	\times	\times	\times	O
Subroutine entry	SUB	$1 \longmapsto$（sus n）-	Indicates the start of the subroutine program＂ n ＂．	1	\bigcirc	O	\bigcirc	O	\bigcirc	O
Subroutine return	RET	$\uparrow \text { (RET }$	Ends the subroutine program．	1	O	O	\bigcirc	O	O	O
Interrupt instructions										
Interrupt	INT	$\underset{\sim}{H}$	Indicates the start of the interrupt program ＂ n ＂．	1	\bigcirc	O	\bigcirc	O	\bigcirc	\bigcirc
Interrupt return	IRET		Ends the interrupt program．	1	0	O	O	O	O	0
Interrupt control	ICTL	H Horo－［iorlst．s2］	Select interrupt enable／disable or clear in ＂ S 1 ＂and＂ S 2 ＂and execute．	5	O	O	O	O	O	0

：Available，$X:$ Not available，$\triangle:$ Not available partially
＊1）Available for FP－e only．
＊2）In the FP2／FP2SH／FP10SH，when the number＂n＂of a subroutine program has an index modifier，the number of steps is the number in parentheses．

Name	Boolean	Symbol	Description	$\begin{aligned} & n \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { 씅 } \\ & \text { 믄 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 노 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 면 } \end{aligned}$	N	
Special setting instructions										
Communication conditions setting	SYS1	$\left.\left\lvert\, \begin{array}{l}\text { (SFF-[SYSI, M }\end{array}\right.\right]$	Change the communication conditions for the COM port or tool port based on the contents specified by the character constant.	13	\times	\bigcirc	$\begin{aligned} & \circ \\ & * 1 \end{aligned}$	$\begin{aligned} & \circ \\ & { }^{\circ} 1 \end{aligned}$	\times	\times
Password setting			Change the password specified by the PLC based on the contents specified by the character constant.		\times	\bigcirc	$\begin{aligned} & \mathrm{O} \\ & { }^{2} 2 \end{aligned}$	\bigcirc	\times	\times
Interrupt setting			Set the interrupt input based on the contents specified by the character constant.		\times	\bigcirc	\bigcirc	\bigcirc	\times	\times
PLC link time setting			Set the system setting time when a PLC link is used, based on the contents specified by the character constant.		\times	\bigcirc	\bigcirc	\bigcirc	\times	\times
MEWTOCOL- COM response control			Change the communication conditions of the COM. port or tool port for MEWTOCOL-COM based on the contents specified by the character constant.		\times	\bigcirc	\bigcirc	\bigcirc	\times	\times
High-speed counter operation mode changing			Change the operation mode of the highspeed counter, based on the contents specified by the character constant.		\times	\bigcirc	$\begin{gathered} \circ \\ \text { *3 } \end{gathered}$	$\begin{gathered} \circ \\ * \\ \hline \end{gathered}$	\times	\times
System registers "No. 40 to No. 47" changing	SYS2	$H H^{\text {SYS2, S. D1, } 22] ~}$	Change the setting value of the system register for the PLC link function.	7	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times

: Available, X : Not available, \triangle : Not available partially
*1) With FP-X Ver2.0 or later, and FP \sum Ver 3.10 or later, the baud rate can be selected from 300, 600 or 1200 bps.
*2) With FP \sum 32k type, the 8-digit password can be selected.
*3) With FPE 32k type and FP-X Ver1.10 or later, it can be used.

Name	Boolean	Symbol	Description	$$	0 $\frac{1}{1}$ $\frac{1}{0}$ 믄	$\begin{aligned} & \text { 뜽 } \\ & \text { 묜 } \end{aligned}$	W	잔	N	
Data compare instructions										
16-bit data compare (Start)	ST=	$\Gamma^{=}=\mathrm{s} 1, \mathrm{~s} 2 \beth$	Begins a logic operation by comparing two 16bit data in the comparative condition "S1=S2".	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ST<>	$\mid \Gamma^{\langle>S 1, S 2} \beth$	Begins a logic operation by comparing two 16bit data in the comparative condition " $\mathrm{S} 1<\mathrm{S} 2$ " or "S1>S2".	5	O	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ST>	$\text { [}^{>\mathrm{s} 1, \mathrm{~S} 2} \beth$	Begins a logic operation by comparing two 16bit data in the comparative condition "S1>S2".	5	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ST>=	$\mid \Gamma^{\gg} \mathrm{S} 1, \mathrm{~S} 2 \ldots$	Begins a logic operation by comparing two 16bit data in the comparative condition "S1>S2" or " $\mathrm{S} 1=\mathrm{S} 2$ ".	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ST<	$\Gamma^{\ll s 1, S 2} \square$	Begins a logic operation by comparing two 16bit data in the comparative condition "S1<S2".	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	ST<=	$\left.\mid \Gamma^{\ll \mathrm{S} 1, \mathrm{~S} 2}\right]$	Begins a logic operation by comparing two 16bit data in the comparative condition " $\mathrm{S} 1<\mathrm{S} 2$ " or " $\mathrm{S} 1=\mathrm{S} 2$ ".	5	O	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16-bit data compare (AND)	AN=	$\underline{L}^{=} \mathrm{S} 1, \mathrm{~S} 2 \mathrm{\square}$	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition " $\mathrm{S} 1=\mathrm{S} 2$ ".	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AN<>	$\left.\check{L}^{\langle>S 1, S 2}\right]$	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1<S2" or "S1>S2".	5	O	O	\bigcirc	\bigcirc	\bigcirc	O
	AN>	$\underline{L}^{>} \mathrm{S} 1, \mathrm{~S} 2 \mathrm{\square}$	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1>S2".	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AN>=	$\left.\underline{L}^{>}=\mathrm{S} 1, \mathrm{~S} 2\right]$	Connects a Form A (normally open) contact serially by comparing two 16 -bit data in the comparative condition " $\mathrm{S} 1>\mathrm{S} 2$ " or " $\mathrm{S} 1=\mathrm{S} 2$ ".	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	AN<	$\square^{\ll 81, ~}{ }^{\text {2 }}$]	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1<S2".	5	O	O	O	\bigcirc	\bigcirc	\bigcirc
	AN<=	$\Gamma^{\ll} \mathrm{S} 1, \mathrm{~S} 2 \ldots$	Connects a Form A (normally open) contact serially by comparing two 16-bit data in the comparative condition "S1<S2" or "S1=S2".	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
16-bit data compare (OR)	OR=	$\left.\Gamma^{=} \mathrm{s} 1, \mathrm{~S} 2\right\rfloor$	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition " $\mathrm{S} 1=\mathrm{S} 2$ ".	5	O	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	OR<>	$\left.\overline{\Gamma^{<\gg 81, ~} \mathrm{~S} 2}\right]$	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition " $\mathrm{S} 1<\mathrm{S} 2$ " or "S1>S2".	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	O
	OR>	$\check{\square}^{>} \mathrm{S} 1, \mathrm{~S} 2 \square$	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1>S2".	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	OR>=	$\Gamma^{\gg}=\mathrm{S} 1, \mathrm{~S} 2 \square$	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition " $\mathrm{S} 1>\mathrm{S} 2$ " or " $\mathrm{S} 1=\mathrm{S} 2$ ".	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	OR<		Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1<S2".	5	O	O	O	\bigcirc	\bigcirc	\bigcirc
	OR<=	$\left.\overline{\Gamma^{\ll ~} \mathrm{~S} 1 . \mathrm{S} 2}\right]$	Connects a Form A (normally open) contact in parallel by comparing two 16-bit data in the comparative condition "S1<S2" or "S1=S2".	5	O	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc

: Available, \times : Not available, \triangle : Not available partially

Name	Boolean	Symbol	Description	\％	$\begin{aligned} & \stackrel{y}{i} \\ & \frac{1}{U} \\ & \frac{1}{O} \\ & \frac{1}{L} \end{aligned}$	믕	W	¢	N	
32－bit data compare （Start）	STD＝	$\left.\right\|^{\text {D }}$ S1，${ }^{\text {S2 }} 工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	0	O
	STD＜＞	D＜＞S1，S2 $工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1， S 1$)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	0	O	0	0
	STD＞	$\left.\right\|^{\text {D＞}}$ S1，S2 $工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S 1 ）$>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	0	O
	STD＞＝	D＞＝S1，S2 $工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， $\mathrm{S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	\bigcirc	O
	STD＜	$\left.\right\|^{\text {D }}$ S1，S2 $工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， S1)<(S2+1, S2)".	9	O	O	\bigcirc	O	0	O
	STD＜＝	$\left.\right\|^{\text {D }}$＝S1，S2 $工$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1， S 1$)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	0	\bigcirc	0	0	0
32－bit data compare （AND）	AND＝	$\check{L}^{\mathrm{D}=\mathrm{S1}, \mathrm{~S} 2} \simeq$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	0	O
	AND＜＞	$\check{L}^{\text {D＜S S ，S2 }} \simeq$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（ $\mathrm{S} 1+1, \mathrm{~S} 1$ ）＜（S2＋1， S 2 ）＂ or＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	－	O	\bigcirc	\bigcirc	\bigcirc	0
	AND＞	$\check{L}^{\text {D }{ }^{\text {S1，S2 }} \text { I }}$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	0	O
	AND＞＝	$\check{L}^{\mathrm{D})=\mathrm{S} 1, \mathrm{~S} 2} \simeq$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	O	O	\bigcirc	O	0	O
	AND＜	$\check{L}^{\mathrm{D}<\mathrm{S} 1, \mathrm{~S} 2} \simeq$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	O	O
	AND＜＝	$\Gamma^{\mathrm{D}<\mathrm{S} 1, \mathrm{~S} 2}$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	O	O
32－bit data compare （OR）	ORD＝	$\Gamma^{\mathrm{D}=\mathrm{S} 1, \mathrm{~S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	0	O
	ORD＜＞	$\Gamma^{\text {D＜＞S1，S2}} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	O	O	\bigcirc	O	0	O
	ORD＞	$\Gamma^{\text {D＞S1，S2 }} \square$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	O	O	\bigcirc	O	0	O
	ORD＞＝	$\Gamma^{\mathrm{D}\rangle=\mathrm{S} 1, \mathrm{~S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	\bigcirc	O	\bigcirc	O	0	O
	ORD＜	$\check{\sim}^{\text {D＜S1，S2 }}$ ］	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂．	9	O	O	\bigcirc	\bigcirc	0	O
	ORD＜＝	$\Gamma^{\mathrm{DC}=\mathrm{S} 1 . \mathrm{S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	O	0	\bigcirc	O	0	O

Available，X ：Not available，$\triangle:$ Not available partially

Name	Boolean	Symbol	Description	号		믕	合	メ	N	
Floating point type real number data compare （Start）	STF＝	$\vdash^{\mathrm{F}=\mathrm{s} 1, \mathrm{~s} 2} \downarrow$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， $\mathrm{S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	STF＜＞	$\vdash^{\mathrm{F}<>\mathrm{S} 1, \mathrm{~S} 2} \downarrow$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1， S 1$)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	STF＞	$\mid \Gamma^{\text {F }} \mathrm{s} 1, \mathrm{~s} 2 \ldots$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂（ $\mathrm{S} 1+1$ ， S1）＞（S2＋1，S2）＂．	9	\times	\bigcirc	\triangle $* 1$	\triangle $* 1$	\times	\times
	STF＞＝	$\vdash^{F P=s 1, S 2} \square$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1， S 1$)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	STF＜	$\vdash^{\mathrm{F}<\mathrm{s} 1, \mathrm{~S} 2} \beth$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	STF＜＝	$\vdash^{\mathrm{F}<=S 1, \mathrm{~S} 2} \square$	Begins a logic operation by comparing two 32－ bit data in the comparative condition＂$(\mathrm{S} 1+1$ ， $\mathrm{S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2)$＂or＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	\times	O	\triangle $* 1$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
Floating point type real number data compare （AND）	ANF＝	$\Gamma^{\mathrm{F}=\mathrm{S1}, \mathrm{~S} 2}$ 工	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＝（S2＋1，S2）＂．	9	X	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	ANF＜＞	$\Gamma^{\mathrm{F}<>\mathrm{S} 1, \mathrm{~S} 2}$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	\times	\bigcirc	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
	ANF＞	$\left.\Gamma^{\mathrm{F}) \mathrm{S} 1, \mathrm{~S} 2} \quad\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	\times	O	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
	ANF＞＝	$\Gamma^{F>}=\mathrm{S1}, \mathrm{S2} \quad \square$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂ or＂ $\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	\bigcirc	$\begin{aligned} & \triangle \\ & { }_{\star 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
	ANF＜	$\left[^{\mathrm{F}<\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂．	9	\times	O	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
	ANF＜＝	$\Gamma^{\mathrm{F}<=S 1, \mathrm{~S} 2}$	Connects a Form A（normally open）contact serially by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
Floating point type real number data compare （OR）	ORF＝	$\left.\check{L}^{\mathrm{F}=\mathrm{S} 1 . \mathrm{S} 2}\right\rfloor$	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂$(\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	\triangle $* 1$	$\stackrel{\triangle}{* 1}$	\times	\times
	ORF＜＞	$\left.\Gamma^{\mathrm{F}<>\mathrm{S} 1 . \mathrm{S} 2}\right\rfloor$	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	\times	\bigcirc	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & * 1 \end{aligned}$	\times	\times
	ORF＞	$\left.\Gamma^{\mathrm{F}\rangle \mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂．	9	\times	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	ORF＞＝	$\left.\Gamma^{\mathrm{F})=\mathrm{S} 1 . \mathrm{S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＞（S2＋1，S2）＂ or＂ $\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	\bigcirc	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times
	ORF＜	$\left.\Gamma^{\mathrm{F}<\mathrm{S} 1, \mathrm{~S} 2}\right]$	Connects a Form A（normally open）contact in parallel by comparing two 32－bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂．	9	\times	O	\triangle $* 1$	\triangle $* 1$	\times	\times
	ORF＜＝	$\Gamma^{\mathrm{F}<=\mathrm{S} 1 . \mathrm{S} 2} \beth$	Connects a Form A（normally open）contact in parallel by comparing two 32 －bit data in the comparative condition＂（S1＋1，S1）＜（S2＋1，S2）＂ or＂ $\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2)$＂．	9	\times	O	$\begin{aligned} & \triangle \\ & { }^{\triangle 1} \end{aligned}$	\triangle $* 1$	\times	\times

：Available，X ：Not available，$\triangle:$ Not available partially
＊1）This instruction is available for FP－X V1． 10 or later and FPE 32k type

11.3 Table of High-level Instructions

The high-level instructions are expressed by the prefixes " F " or " P " with numbers. For most of the high-level instructions, "F" and "P" types are available. The differences between the two types are explained as follows:

- Instructions with the prefix " F " are executed in every scan while its trigger is in the on.
- Instructions with the prefix " P " are executed only when the leading edge of its trigger is detected.

For the FP0/FPOR/FPE/FP-X, the P type high-level instructions are not available.

Number	Name	$\begin{aligned} & \text { Boo- } \\ & \text { lean } \end{aligned}$	Operand	Description	$\begin{aligned} & n \\ & \stackrel{n}{2} \\ & \stackrel{y}{*} \end{aligned}$		$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	$\begin{aligned} & \times \\ & \text { 민 } \end{aligned}$	$\stackrel{N}{\mathrm{~N}}$	
Data transfer instructions											
$\begin{aligned} & \mathrm{FO} \\ & \mathrm{PO} \\ & \hline \end{aligned}$	16-bit data move	MV PMV	S, D	$(\mathrm{S}) \rightarrow(\mathrm{D})$	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F1 } \\ & \text { P1 } \end{aligned}$	32-bit data move	DMV PDMV	S, D	$(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	O	\bigcirc	O	-	\bigcirc
$\begin{aligned} & \text { F2 } \\ & \text { P2 } \end{aligned}$	16-bit data invert and move	MV PMVI	S, D	$(\mathrm{S}) \rightarrow(\mathrm{D})$	5	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F3 } \\ & \text { P3 } \end{aligned}$	32-bit data invert and move	DMVI PDMVI	S, D	$\overline{(S+1, S)} \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	-	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F4 } \\ & \text { P4 } \end{aligned}$	Reading of head word No. of the specified slot	GETS PGETS	S, D	The head word No. of the specified slot is read.	5	\times	\times	\times	\times	$\begin{aligned} & \triangle \\ & *_{1} \end{aligned}$	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$
$\begin{aligned} & \text { F5 } \\ & \text { P5 } \end{aligned}$	Bit data move	BTM PBTM	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	The specified one bit in " S " is transferred to the specified one bit in " D ". The bit is specified by " n ".	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
$\begin{aligned} & \text { F6 } \\ & \text { P6 } \end{aligned}$	Hexadecimal digit (4-bit) data move	$\begin{aligned} & \text { DGT } \\ & \text { PDGT } \end{aligned}$	S, n, d	The specified one digit in " S " is transferred to the specified one digit in "D". The digit is specified by " n ".	7	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
$\begin{aligned} & \text { F7 } \\ & \text { P7 } \\ & \hline \end{aligned}$	Two 16-bit data move	MV2 PMV2	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & \text { (S1) } \rightarrow(\mathrm{D}), \\ & (\mathrm{S} 2) \rightarrow(\mathrm{D}+1) \end{aligned}$	7	\times	O	\bigcirc	O	-	\bigcirc
$\begin{aligned} & \text { F8 } \\ & \text { P8 } \\ & \hline \end{aligned}$	Two 32-bit data move	DMV2 PDMV2	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \\ & \hline \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}), \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2) \end{aligned}$	11	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F10 } \\ & \text { P10 } \\ & \hline \end{aligned}$	Block move	$\begin{aligned} & \hline \text { BKMV } \\ & \text { PBKMV } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \\ & \hline \end{aligned}$	The data between " S 1 " and " S 2 " is transferred to the area starting at "D".	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F11 } \\ & \text { P11 } \end{aligned}$	Block copy	COPY PCOPY	$\begin{aligned} & \text { S, D1, } \\ & \text { D2 } \end{aligned}$	The data of " S " is transferred to the all area between "D1" and "D2".	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
F12	Data read from EEPROM	ICRD	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data stored in the expansion memory of the EEP-ROM specified by "S1" and "S2" are transferred to the area starting at " D ".	11	$\begin{aligned} & \mathrm{O} \\ & \text { *2 }^{2} \end{aligned}$	\times	x	\times	\times	\times
P13	Data write to EEP-ROM	PICWT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data specified by "S1" and "S2" are transferred to the EEP-ROM starting at "D".	11	$\begin{aligned} & \hline \mathrm{O} \\ & { }^{2} 2 \\ & \hline \end{aligned}$	\times	\times	\times	\times	\times
F12	Data read from F-ROM	ICRD	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data stored in the expansion memory of the F-ROM specified by "S1" and "S2" are transferred to the area starting at "D".	11	\times	\bigcirc	\bigcirc	-	\times	\times
P13	Data write to F-ROM	PICWT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data specified by "S1" and "S2" are transferred to the F-ROM starting at "D".	11	\times	\bigcirc	\bigcirc	\bigcirc	\times	\times
$\begin{aligned} & \hline \text { F12 } \\ & \text { P12 } \end{aligned}$	Data read from IC card	ICRD PICRD	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data stored in the expansion memory of the IC card specified by "S1" and "S2" are transferred to the area starting at "D".	11	\times	\times	\times	\times	\times	\bigcirc
$\begin{aligned} & \text { F13 } \\ & \text { P13 } \end{aligned}$	Data write to IC card	$\begin{aligned} & \hline \text { ICWT } \\ & \text { PICWT } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The data specified by "S1" and "S2" are transferred to the IC card expansion memory area starting at "D".	11	\times	\times	x	\times	\times	\bigcirc
$\begin{aligned} & \text { F14 } \\ & \text { P14 } \end{aligned}$	Program read from IC memory card	PGRD PPGRD	S	The program specified using " S " is transferred into the CPU from IC memory card and executes it.	3	\times	\times	\times	\times	\times	\bigcirc

Available, $X:$ Not available, $\triangle:$ Not available partially
*1) This instruction is available for FP2/FP2SH Ver. 1.5 or later.FP10SH cannot be used
*2) This instruction is available for FPO Ver. 2.0 or later and FP-e.

Number	Name	Boo-lean	Operand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \vdots \end{aligned}$		믕	W	$\begin{aligned} & \times \underset{i}{i} \\ & \text { in } \end{aligned}$	N	
$\begin{aligned} & \text { F15 } \\ & \text { P15 } \\ & \hline \end{aligned}$	16-bit data exchange	$\begin{aligned} & \mathrm{XCH} \\ & \mathrm{PXCH} \end{aligned}$	D1, D2	$(\mathrm{D} 1) \rightarrow(\mathrm{D} 2),(\mathrm{D} 2) \rightarrow(\mathrm{D} 1)$	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F16 } \\ & \text { P16 } \end{aligned}$	32-bit data exchange	$\begin{aligned} & \text { DXCH } \\ & \text { PDXCH } \end{aligned}$	D1, D2	$\begin{aligned} & (\mathrm{D} 1+1, \mathrm{D} 1) \rightarrow(\mathrm{D} 2+1, \mathrm{D} 2) \\ & (\mathrm{D} 2+1, \mathrm{D} 2) \rightarrow(\mathrm{D} 1+1, \mathrm{D} 1) \end{aligned}$	5	O	O	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F17 } \\ & \text { P17 } \end{aligned}$	Higher/lower byte in 16-bit data exchange	SWAP PSWAP	D	The higher byte and lower byte of " D " are exchanged.	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F18 } \\ & \text { P18 } \end{aligned}$	16-bit data block exchange	$\begin{aligned} & \text { ВХСН } \\ & \text { РBXCH } \end{aligned}$	$\begin{aligned} & \text { D1, } \\ & \text { D2, D3 } \end{aligned}$	Exchange the data between "D1" and "D2" with the data specified by "D3".	7	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Control instruction											
F19	Auxiliary jump	SJP	S	The program jumps to the label instruction specified by " S " and continues from there.	3	\times	\times	\times	\times	\bigcirc	\bigcirc
Binary arithmetic instructions											
$\begin{aligned} & \text { F20 } \\ & \text { P20 } \\ & \hline \end{aligned}$	16-bit data addition	$\begin{aligned} & \hline \mathbf{+} \\ & \mathrm{P}+ \\ & \hline \end{aligned}$	S, D	$(\mathrm{D})+(\mathrm{S}) \rightarrow(\mathrm{D})$	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F21 } \\ & \text { P21 } \\ & \hline \end{aligned}$	32-bit data addition	$\begin{aligned} & \mathrm{D}+ \\ & \text { PD+ } \end{aligned}$	S, D	$(\mathrm{D}+1, \mathrm{D})+(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F22 } \\ & \text { P22 } \\ & \hline \end{aligned}$	16-bit data addition	$\begin{aligned} & \mathbf{+} \\ & \mathbf{P +} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1)+(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	\bigcirc	O	\bigcirc	\bigcirc	O	O
$\begin{aligned} & \text { F23 } \\ & \text { P23 } \\ & \hline \end{aligned}$	32-bit data addition	$\begin{aligned} & \text { D+ } \\ & \text { PD+ } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F25 } \\ & \text { P25 } \\ & \hline \end{aligned}$	16-bit data subtraction	P.	S, D	(D)-(S) \rightarrow (D)	5	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F26 } \\ & \text { P26 } \end{aligned}$	32-bit data subtraction	$\begin{aligned} & \text { D- } \\ & \text { PD- } \end{aligned}$	S, D	$(\mathrm{D}+1, \mathrm{D})-(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F27 } \\ & \text { P27 } \\ & \hline \end{aligned}$	16-bit data subtraction	P-	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	(S1)-(S2) \rightarrow (D)	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F28 } \\ & \text { P28 } \\ & \hline \end{aligned}$	32-bit data subtraction	$\begin{aligned} & \hline \text { D- } \\ & \text { PD- } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	(S1+1, S1)-(S2+1, S2) $\rightarrow(\mathrm{D}+1, \mathrm{D})$	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F30 } \\ & \text { P30 } \\ & \hline \end{aligned}$	16-bit data multiplication	P*	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1) \mathrm{X}(\mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F31 } \\ & \text { P31 } \end{aligned}$	32-bit data multiplication	$\begin{aligned} & \mathrm{D}^{*} \\ & \mathrm{PD}^{*} \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (S 1+1, S 1) X(S 2+1, S 2) \rightarrow(D+3, D+2, \\ & D+1, D) \end{aligned}$	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F32 } \\ & \text { P32 } \end{aligned}$	16-bit data division	$\begin{aligned} & \hline \text { \% } \\ & \text { P\% } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1) \div(\mathrm{S} 2) \rightarrow \text { quotient }(\mathrm{D}) \\ & \text { remainder }(\mathrm{DT9015}) \end{aligned}$	7	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F33 } \\ & \text { P33 } \end{aligned}$	32-bit data division	$\begin{aligned} & \text { D\% } \\ & \text { PD\% } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \div(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \text { quotient }(\mathrm{D}+1, \\ & \mathrm{D}) \\ & \text { remainder }(\mathrm{DT9016}, \mathrm{D} 9015) \end{aligned}$	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F34 } \\ & \text { P34 } \end{aligned}$	16-bit data multiplication (result in 16 bits)	$\begin{aligned} & \text { *W } \\ & \text { P*W } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1) \mathrm{X}(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	\times	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F35 } \\ & \text { P35 } \\ & \hline \end{aligned}$	16-bit data increment	$\begin{aligned} & \mathbf{+ 1} \\ & \text { P+1 } \end{aligned}$	D	(D) $+1 \rightarrow(\mathrm{D})$	3	\bigcirc	O	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F36 } \\ & \text { P36 } \end{aligned}$	32-bit data increment	$\begin{aligned} & \hline \mathrm{D}+1 \\ & \mathrm{PD}+1 \\ & \hline \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F37 } \\ & \text { P37 } \end{aligned}$	16-bit data decrement	$\begin{aligned} & -1 \\ & \mathrm{P}-1 \end{aligned}$	D	(D)-1 \rightarrow (D)	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F38 } \\ & \text { P38 } \\ & \hline \end{aligned}$	32-bit data decrement	$\begin{aligned} & \hline \mathrm{D}-1 \\ & \mathrm{PD}-1 \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F39 } \\ & \text { P39 } \end{aligned}$	32-bit data multiplication (result in 32 bits)	$\begin{aligned} & \hline \text { D*D } \\ & \text { PD*D } \end{aligned}$	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \times(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	\times	O	\bigcirc	\bigcirc	\bigcirc	O

: Available, \times : Not available, $\triangle:$ Not available partially

Number	Name	Boolean	Operand	Description	$\begin{aligned} & n \\ & \stackrel{2}{0} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	$\stackrel{\text { ¢ }}{\text { ¢ }}$	N	
BCD arithmetic instructions											
$\begin{aligned} & \text { F40 } \\ & \text { P40 } \end{aligned}$	4-digit BCD data addition	$\begin{aligned} & \mathrm{B+}+ \\ & \mathrm{PB}+ \end{aligned}$	S, D	$(\mathrm{D})+(\mathrm{S}) \rightarrow(\mathrm{D})$	5	O	\bigcirc	○	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F41 } \\ & \text { P41 } \end{aligned}$	8-digit BCD data addition	$\begin{aligned} & \text { DB+ } \\ & \text { PDB+ } \end{aligned}$	S, D	$(\mathrm{D}+1, \mathrm{D})+(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F42 } \\ & \text { P42 } \end{aligned}$	4-digit BCD data addition	$\begin{aligned} & \mathrm{B}+ \\ & \mathrm{PB}+ \end{aligned}$	S1, S2, D	$(\mathrm{S} 1)+(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F43 } \\ & \text { P43 } \end{aligned}$	8-digit BCD data addition	$\begin{aligned} & \text { DB+ } \\ & \text { PDB+ } \end{aligned}$	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F45 } \\ & \text { P45 } \end{aligned}$	4-digit BCD data subtraction	B-PB-	S, D	(D)-(S) \rightarrow (D)	5	O	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F46 } \\ & \text { P46 } \end{aligned}$	8-digit BCD data subtraction	DB-PDB-	S, D	$(\mathrm{D}+1, \mathrm{D})-(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	O	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F47 } \\ & \text { P47 } \end{aligned}$	4-digit BCD data subtraction	B-PB-	S1, S2, D	$(\mathrm{S} 1)-(\mathrm{S} 2) \rightarrow(\mathrm{D})$	7	O	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F48 } \\ & \text { P48 } \end{aligned}$	8-digit BCD data subtraction	DB-PDB-	S1, S2, D	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	11	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F50 } \\ & \text { P50 } \end{aligned}$	4-digit BCD data multiplication	$\begin{aligned} & \mathbf{B}^{*} \\ & \mathbf{P B}^{*} \end{aligned}$	S1, S2, D	$(\mathrm{S} 1) \mathrm{X}(\mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	7	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F51 } \\ & \text { P51 } \end{aligned}$	8-digit BCD data multiplication	$\begin{aligned} & \hline \text { DB* }^{*} \\ & \text { PDB* } \end{aligned}$	S1, S2, D	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \mathrm{X}(\mathrm{~S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2, \\ & \mathrm{D}+1, \mathrm{D}) \end{aligned}$	11	O	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F52 } \\ & \text { P52 } \\ & \hline \end{aligned}$	4-digit BCD data division	$\begin{aligned} & \hline \text { B\% } \\ & \text { PB\% } \\ & \hline \end{aligned}$	S1, S2, D	$\begin{aligned} & \hline(\mathrm{S} 1) \div(\mathrm{S} 2) \rightarrow \text { quotient (D) } \\ & \text { remainder (DT9015) } \end{aligned}$	7	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F53 } \\ & \text { P53 } \end{aligned}$	8-digit BCD data division	$\begin{aligned} & \text { DB\% } \\ & \text { PDB\% } \end{aligned}$	S1, S2, D	$\begin{aligned} & (S 1+1, S 1) \div(S 2+1, S 2) \rightarrow \text { quotient } \\ & (D+1, D) \\ & \text { remainder }(D T 9016, \text { DT9015) } \end{aligned}$	11	O	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F55 } \\ & \text { P55 } \end{aligned}$	4-digit BCD data increment	$\begin{aligned} & \mathrm{B}+1 \\ & \mathrm{~PB}+1 \end{aligned}$	D	$(\mathrm{D})+1 \rightarrow(\mathrm{D})$	3	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F56 } \\ & \text { P56 } \end{aligned}$	8-digit BCD data increment	$\begin{aligned} & \mathrm{DB}+1 \\ & \mathrm{PDB}+1 \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})+1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	O	\bigcirc	○	O	O	\bigcirc
$\begin{aligned} & \hline \text { F57 } \\ & \text { P57 } \end{aligned}$	4-digit BCD data decrement	$\begin{aligned} & \text { B-1 } \\ & \text { PB-1 } \end{aligned}$	D	(D)-1 \rightarrow (D)	3	O	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F58 } \\ & \text { P58 } \end{aligned}$	8-digit BCD data decrement	$\begin{aligned} & \text { DB-1 } \\ & \text { PDB-1 } \end{aligned}$	D	$(\mathrm{D}+1, \mathrm{D})-1 \rightarrow(\mathrm{D}+1, \mathrm{D})$	3	\bigcirc	\bigcirc	\bigcirc	O	O	\bigcirc
Data compare instructions											
$\begin{aligned} & \text { F60 } \\ & \text { P60 } \end{aligned}$	16-bit data compare	CMP PCMP	S1, S2	$\begin{aligned} & \text { (S1)>(S2) } \rightarrow \text { R900A: on } \\ & \text { (S1) }=(\mathrm{S} 2) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1)<(\mathrm{S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	5	\bigcirc	\bigcirc	\bigcirc	O	O	O
$\begin{aligned} & \text { F61 } \\ & \text { P61 } \end{aligned}$	32-bit data compare	DCMP PDCMP	S1, S2	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{~A}: \text { on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	9	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O
$\begin{aligned} & \text { F62 } \\ & \text { P62 } \end{aligned}$	16-bit data band compare	WIN PWIN	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3 } \end{aligned}$	$\begin{aligned} & \text { (S1)>(S3) } \rightarrow \text { R900A: on } \\ & (\mathrm{S} 2)<\text { or }=(\mathrm{S} 1)<\text { or }=(\mathrm{S} 3) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1)<(\mathrm{S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	7	O	\bigcirc	\bigcirc	O	O	O

[^3]| Number | Name | Boo-
 lean | Operand | Description | $\begin{aligned} & n \\ & \frac{0}{2} \\ & \stackrel{y}{0} \end{aligned}$ | | $\begin{aligned} & \text { 뜽 } \\ & \text { 믄 } \end{aligned}$ | $\begin{aligned} & \text { W } \\ & \text { 문 } \end{aligned}$ | $\begin{aligned} & \times \\ & \text { ì } \\ & \hline 14 \end{aligned}$ | N | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { F63 } \\ & \text { P63 } \end{aligned}$ | 32-bit data band compare | DWIN PDWIN | $\begin{aligned} & \text { S1, S2, } \\ & \text { S3 } \end{aligned}$ | $\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow \mathrm{R} 900 \mathrm{~A}: \text { on } \\ & (\mathrm{S} 2+1, \mathrm{~S} 2)<\text { or }=(\mathrm{S} 1+1, \mathrm{~S} 1)<\text { or }=(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3) \rightarrow \mathrm{R} 900 \mathrm{~B}: \text { on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$ | 13 | \bigcirc | - | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \hline \text { F64 } \\ & \text { P64 } \end{aligned}$ | Block data compare | BCMP PBCMP | $\begin{aligned} & \text { S1, S2, } \\ & \text { S3 } \end{aligned}$ | Compares the two blocks beginning with "S2" and "S3" to see if they are equal. | 7 | \bigcirc | O | \bigcirc | O | \bigcirc | \bigcirc |
| Logic operation instructions | | | | | | | | | | | |
| $\begin{aligned} & \hline \text { F65 } \\ & \text { P65 } \end{aligned}$ | 16-bit data AND | WAN PWAN | S1, S2, D | $(\mathrm{S} 1)$ AND (S2) \rightarrow (D) | 7 | \bigcirc | O | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \hline \text { F66 } \\ & \text { P66 } \end{aligned}$ | 16-bit data OR | WOR PWOR | S1, S2, D | $(\mathrm{S} 1) \mathrm{OR}(\mathrm{S} 2) \rightarrow(\mathrm{D})$ | 7 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \text { F67 } \\ & \text { P67 } \end{aligned}$ | 16-bit data exclusive OR | XOR
 PXOR | S1, S2, D | $\{(\mathrm{S} 1)$ AND $\overline{(\mathrm{S} 2})\}$ OR $\{\overline{(\mathrm{S} 1})$ AND $(\mathrm{S} 2)\} \rightarrow(\mathrm{D})$ | 7 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \hline \text { F68 } \\ & \text { P68 } \end{aligned}$ | 16-bit data exclusive NOR | XNR PXNR | S1, S2, D | $\{(\mathrm{S} 1)$ AND (S2) \} OR $\{\overline{(\mathrm{S} 1)}$ AND $\overline{(\mathrm{S} 2})\} \rightarrow(\mathrm{D})$ | 7 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \hline \text { F69 } \\ & \text { P69 } \end{aligned}$ | 16-bit data unite | WUNI PWUNI | $\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$ | $\begin{aligned} & ([\mathrm{S} 1] \text { AND [S3]) OR }([\mathrm{S} 2] \text { AND }[\mathrm{SS} 3]) \rightarrow(\mathrm{D}) \\ & \text { When }(\mathrm{S} 3) \text { is H0, (S2) } \rightarrow(\mathrm{D}) \\ & \text { When }(\mathrm{S} 3) \text { is HFFFF, }(\mathrm{S} 1) \rightarrow(\mathrm{D}) \end{aligned}$ | 9 | \times | \bigcirc | \bigcirc | O | \bigcirc | O |
| Data conversion instructions | | | | | | | | | | | |
| $\begin{aligned} & \text { F70 } \\ & \text { P70 } \end{aligned}$ | Block check code calculation | $\begin{aligned} & \text { BCC } \\ & \text { PBCC } \end{aligned}$ | $\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$ | Creates the code for checking the data specified by "S2" and "S3" and stores it in "D".
 The calculation method is specified by "S1". | 9 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \text { F71 } \\ & \text { P71 } \end{aligned}$ | Hexadecima I data \rightarrow ASCII code | HEXA PHEXA | S1, S2, D | Converts the hexadecimal data specified by "S1" and "S2" to ASCII code and stores it in "D".
 Example: $\mathrm{HABCD} \rightarrow \mathrm{H} \frac{42}{\mathrm{~B}} \frac{41}{\mathrm{~A}} \frac{44}{\mathrm{D}} \frac{43}{\mathrm{C}}$ | 7 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |
| $\begin{aligned} & \text { F72 } \\ & \text { P72 } \end{aligned}$ | ASCII code \rightarrow Hexadecimal data | AHEX
 PAHEX | S1, S2, D | Converts the ASCII code specified by " S 1 " and "S2" to hexadecimal data and stores it in "D".
 Example: $\mathrm{H} \frac{44}{\mathrm{D}} \frac{43}{\mathrm{C}} \frac{42}{\mathrm{~B}} \frac{41}{\mathrm{~A}} \rightarrow \mathrm{HCDAB}$ | 7 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | O |
| $\begin{aligned} & \text { F73 } \\ & \text { P73 } \end{aligned}$ | 4-digit BCD data \rightarrow ASCII code | $\begin{aligned} & \text { BCDA } \\ & \text { PBCDA } \end{aligned}$ | S1, S2, D | Converts the four digits of BCD data specified by " S 1 " and "S2" to ASCII code and stores it in " D ".
 Example: $\mathrm{H} 1234 \rightarrow \mathrm{H} \frac{32}{2} \frac{31}{1} \frac{34}{4} \frac{33}{3}$ | 7 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| $\begin{aligned} & \text { F74 } \\ & \text { P74 } \end{aligned}$ | ASCII code \rightarrow 4-digit BCD data | $\begin{aligned} & \text { ABCD } \\ & \text { PABCD } \end{aligned}$ | S1, S2, D | Converts the ASCII code specified by "S1" and "S2" to four digits of BCD data and stores it in "D".
 Example: $\mathrm{H} \frac{34}{4} \frac{33}{3} \frac{32}{2} \frac{31}{1} \rightarrow \mathrm{H} 3412$ | 9 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| $\begin{aligned} & \text { F75 } \\ & \text { P75 } \end{aligned}$ | 16-bit binary data \rightarrow ASCII code | BINA PBINA | S1, S2, D | Converts the 16 bits of binary data specified by "S1" to ASCII code and stores it in "D" (area of "S2" bytes).
 Example: $\mathrm{K}-100 \rightarrow \mathrm{H} \frac{30}{0} \frac{30}{0} \frac{31}{1} \frac{2 \mathrm{D}}{-} \underline{20} \underline{20}$ | 7 | \bigcirc | \bigcirc | \bigcirc | O | \bigcirc | \bigcirc |

: Available, X : Not available, \triangle : Not available partially

Number	Name	Boolean	Operand	Description	$\begin{aligned} & n \\ & \frac{0}{0} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \text { 씅 } \\ & \text { 묜 } \end{aligned}$	W	$\stackrel{\text { ¢ }}{\text { ¢ }}$	N	
$\begin{aligned} & \text { F76 } \\ & \text { P76 } \end{aligned}$	ASCII code \rightarrow 16-bit binary data	ABIN PABIN	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	Converts the ASCII code specified by " S 1 " and " S 2 " to 16 bits of binary data and stores it in "D". Example: $\mathrm{H} \frac{30}{0} \frac{30}{0} \frac{31}{1} \underline{2 D} \underline{20} \underline{20} \rightarrow \mathrm{~K}-100$	7	\bigcirc	\bigcirc	O	O	O	O
$\begin{aligned} & \text { F77 } \\ & \text { P77 } \end{aligned}$	32-bit binary data \rightarrow ASCII code	DBIA PDBIA	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	Converts the 32 bits of binary data (S1+1, S1) to ASCII code and stores it in D (area of "S2" bytes).	11	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F78 } \\ & \text { P78 } \end{aligned}$	ASCII code \rightarrow 32-bit binary data	DABI PDABI	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	Converts the ASCII code specified by "S1" and "S2" to 32 bits of binary data and stores it in (D+1, D).	11	\bigcirc	\bigcirc	O	\bigcirc	O	O
$\begin{aligned} & \text { F80 } \\ & \text { P80 } \end{aligned}$	16-bit binary data \rightarrow 4-digit BCD data	$\begin{aligned} & \text { BCD } \\ & \text { PBCD } \end{aligned}$	S, D	Converts the 16 bits of binary data specified by " S " to four digits of BCD data and stores it in " D ". Example: $\mathrm{K} 100 \rightarrow \mathrm{H} 100$	5	\bigcirc	\bigcirc	O	O	O	O
$\begin{aligned} & \hline \text { F81 } \\ & \text { P81 } \end{aligned}$	4-digit BCD data \rightarrow 16-bit binary data	BIN PBIN	S, D	Converts the four digits of BCD data specified by " S " to 16 bits of binary data and stores it in "D". Example: $\mathrm{H} 100 \rightarrow \mathrm{~K} 100$	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	O
$\begin{aligned} & \text { F82 } \\ & \text { P82 } \end{aligned}$	32-bit binary data $\rightarrow 8$-digit BCD data	$\begin{aligned} & \text { DBCD } \\ & \text { PDBCD } \end{aligned}$	S, D	Converts the 32 bits of binary data specified by $(\mathrm{S}+1, \mathrm{~S})$ to eight digits of $B C D$ data and stores it in ($D+1, D$).	7	\bigcirc	\bigcirc	O	\bigcirc	O	O
$\begin{aligned} & \text { F83 } \\ & \text { P83 } \end{aligned}$	8-digit BCD data \rightarrow 32-bit binary data	DBIN PDBIN	S, D	Converts the eight digits of BCD data specified by ($\mathrm{S}+1, \mathrm{~S}$) to 32 bits of binary data and stores it in (D+1, D).	7	\bigcirc	\bigcirc	O	O	O	O
$\begin{aligned} & \text { F84 } \\ & \text { P84 } \end{aligned}$	16-bit data invert (complement of 1)	INV PINV	D	Inverts each bit of data of "D".	3	\bigcirc	\bigcirc	O	O	O	O
$\begin{aligned} & \hline \text { F85 } \\ & \text { P85 } \end{aligned}$	16-bit data complement of 2	NEG PNEG	D	Inverts each bit of data of " D " and adds 1 (inverts the sign).	3	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc
$\begin{aligned} & \hline \text { F86 } \\ & \text { P86 } \end{aligned}$	32-bit data complement of 2	DNEG PDNEG	D	Inverts each bit of data of ($\mathrm{D}+1, \mathrm{D}$) and adds 1 (inverts the sign).	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F87 } \\ & \text { P87 } \end{aligned}$	16-bit data absolute	ABS PABS	D	Gives the absolute value of the data of "D".	3	\bigcirc	\bigcirc	O	O	O	\bigcirc
$\begin{aligned} & \hline \text { F88 } \\ & \text { P88 } \end{aligned}$	32-bit data absolute	DABS PDABS	D	Gives the absolute value of the data of (D+1, D).	3	\bigcirc	\bigcirc	O	O	O	\bigcirc
$\begin{aligned} & \text { F89 } \\ & \text { P89 } \end{aligned}$	16-bit data sign extension	$\begin{aligned} & \text { EXT } \\ & \text { PEXT } \end{aligned}$	D	Extends the 16 bits of data in "D" to 32 bits in ($D+1, D$).	3	\bigcirc	\bigcirc	O	\bigcirc	O	O
$\begin{aligned} & \text { F90 } \\ & \text { P90 } \end{aligned}$	Decode	$\begin{aligned} & \text { DECO } \\ & \text { PDECO } \end{aligned}$	S, n, D	Decodes part of the data of " S " and stores it in " D ". The part is specified by " n ".	7	-	\bigcirc	O	O	O	\bigcirc
$\begin{aligned} & \hline \text { F91 } \\ & \text { P91 } \end{aligned}$	7-segment decode	$\begin{aligned} & \hline \text { SEGT } \\ & \text { PSEGT } \end{aligned}$	S, D	Converts the data of " S " for use in a 7 segment display and stores it in ($\mathrm{D}+1$, D).	5	\bigcirc	\bigcirc	O	O	O	\bigcirc
$\begin{aligned} & \hline \text { F92 } \\ & \text { P92 } \end{aligned}$	Encode	$\begin{aligned} & \hline \text { ENCO } \\ & \text { PENCO } \end{aligned}$	S, n, D	Encodes part of the data of " S " and stores it in " D ". The part is specified by " n ".	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \hline \text { F93 } \\ & \text { P93 } \end{aligned}$	16-bit data combine	UNIT PUNIT	S, n, D	The least significant digit of each of the " n " words of data beginning at " S " are stored (united) in order in "D".	7	\bigcirc	\bigcirc	O	\bigcirc	O	O

\bigcirc : Available, \times : Not available, \triangle : Not available partially

Number	Name	$\begin{aligned} & \text { Boo- } \\ & \text { lean } \end{aligned}$	Operand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \text { í } \\ & \frac{1}{1} \\ & \frac{1}{\mathbf{1}} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	$\begin{aligned} & \times \\ & \text { 민 } \end{aligned}$	N	
$\begin{aligned} & \hline \text { F94 } \\ & \text { P94 } \end{aligned}$	16-bit data distribute	DIST PDIST	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	Each of the digits of the data of " S " are stored in (distributed to) the least significant digits of the areas beginning at " D ".	7	O	O	O	O	\bigcirc	O
$\begin{aligned} & \text { F95 } \\ & \text { P95 } \end{aligned}$	$\begin{aligned} & \text { Character } \rightarrow \text { ASCII } \\ & \text { code } \end{aligned}$	$\begin{aligned} & \text { ASC } \\ & \text { PASC } \end{aligned}$	S, D	Twelve characters of the character constants of " S " are converted to ASCII code and stored in "D" to "D+5".	15	O	\bigcirc	\bigcirc	O	\bigcirc	O
$\begin{aligned} & \text { F96 } \\ & \text { P96 } \end{aligned}$	16-bit table data search	SRC PSRC	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The data of " S 1 " is searched for in the areas in the range "S2" to "S3" and the result is stored in DT9037 and DT9038	7	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \hline \text { F97 } \\ & \text { P97 } \end{aligned}$	32-bit table data search	DSRC PDSRC	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The data of (S1+1, S1) is searched for in the 32-bit data designated by "S3", beginning from "S2", and the result if stored in DT90037 and DT90038.	11	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
Data shift instructions											
$\begin{aligned} & \text { F98 } \\ & \text { P98 } \end{aligned}$	Data table shift-out and compress	CMPR PCMPR	D1, D2, D3	Transfer "D2" to "D3". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	\times	\bigcirc	\bigcirc	O	\bigcirc	O
$\begin{aligned} & \text { F99 } \\ & \text { P99 } \end{aligned}$	Data table shift-in and compress	CMPW PCMP W	$\begin{aligned} & \text { S, D1, } \\ & \text { D2 } \end{aligned}$	Transfer "S" to "D1". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F100 } \\ & \text { P100 } \end{aligned}$	Right shift of multiple bits (n bits) in a 16-bit data	SHR PSHR	D, n	Shifts the "n" bits of "D" to the right.	5	O	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F101 } \\ & \text { P101 } \end{aligned}$	Left shift of multiple bits (n bits) in a 16bit data	SHL PSHL	D, n	Shifts the "n" bits of "D" to the left.	5	O	\bigcirc	\bigcirc	O	\bigcirc	O
$\begin{aligned} & \text { F102 } \\ & \text { P102 } \end{aligned}$	Right shift of \boldsymbol{n} bits in a 32-bit data	DSHR PDSHR	D, n	Shifts the " n " bits of the 32-bit data area specified by $(D+1, D)$ to the right.	5	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F103 } \\ & \text { P103 } \\ & \hline \end{aligned}$	Left shift of \mathbf{n} bits in a 32-bit data	DSHL PDSHL	D, n	Shifts the " n " bits of the 32-bit data area specified by ($\mathrm{D}+1, \mathrm{D}$) to the left.	5	\times	O	\bigcirc	O	\bigcirc	O
$\begin{aligned} & \text { F105 } \\ & \text { P105 } \end{aligned}$	Right shift of one hexadecimal digit (4bit)	$\begin{aligned} & \text { BSR } \\ & \text { PBSR } \end{aligned}$	D	Shifts the one digit of data of "D" to the right.	3	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F106 } \\ & \text { P106 } \end{aligned}$	Left shift of one hexadecimal digit (4-bit)	$\begin{aligned} & \hline \text { BSL } \\ & \text { PBSL } \end{aligned}$	D	Shifts the one digit of data of "D" to the left.	3	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F108 } \\ & \text { P108 } \end{aligned}$	Right shift of multiple bits (n bits)	BITR PBITR	$\begin{aligned} & \hline \text { D1, } \\ & \text { D2, } \end{aligned}$	Shifts the " n " bits of data range by "D1" and "D2" to the right.	7	\times	O	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F109 } \\ & \text { P109 } \end{aligned}$	Left shift of multiple bits (n bits)	BITL PBITL	$\begin{aligned} & \text { D1, } \\ & \text { D2, n } \end{aligned}$	Shifts the " n " bits of data range by "D1" and "D2" to the left.	7	\times	O	O	O	\bigcirc	O
$\begin{aligned} & \hline \text { F110 } \\ & \text { P110 } \\ & \hline \end{aligned}$	Right shift of one word (16-bit)	WSHR PWSHR	$\begin{aligned} & \mathrm{D} 1, \\ & \mathrm{D} 2 \end{aligned}$	Shifts the one word of the areas by "D1" and "D2" to the right.	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F111 } \\ & \text { P111 } \end{aligned}$	Left shift of one word (16-bit)	WSHL PWSHL	$\begin{aligned} & \mathrm{D} 1, \\ & \mathrm{D} 2 \end{aligned}$	Shifts the one word of the areas by "D1" and "D2" to the left.	5	O	O	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F112 } \\ & \text { P112 } \end{aligned}$	Right shift of one hexadecimal digit (4bit)	WBSR PWBSR	$\begin{aligned} & \text { D1, } \\ & \text { D2 } \end{aligned}$	Shifts the one digit of the areas by "D1" and "D2" to the right.	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \hline \text { F113 } \\ & \text { P113 } \end{aligned}$	Left shift of one hexadecimal digit (4bit)	WBSL PWBSL	$\begin{aligned} & \hline \text { D1, } \\ & \text { D2 } \end{aligned}$	Shifts the one digit of the areas by "D1" and "D2" to the left.	5	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O

: Available, \times : Not available, $\triangle:$ Not available partially

Num -ber	Name	Boolean	Operand	Description	足		$\begin{aligned} & \text { 믕 } \\ & \text { ㄴㄴㄴ } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 노 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { ì } \\ & \hline 1 \end{aligned}$	N	
FIFO instructions											
$\begin{aligned} & \text { F115 } \\ & \text { P115 } \end{aligned}$	FIFO buffer define	$\begin{aligned} & \text { FIFT } \\ & \text { PFIFT } \end{aligned}$	n, D	The " n " words beginning from " D " are defined in the buffer.	5	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F116 } \\ & \text { P116 } \end{aligned}$	Data read from FIFO buffer	FIFR PFIFR	S, D	The oldest data beginning from " S " that was written to the buffer is read and stored in "D".	5	\times	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
$\begin{aligned} & \text { F117 } \\ & \text { P117 } \end{aligned}$	Data write into FIFO buffer	$\begin{aligned} & \text { FIFW } \\ & \text { PFIFW } \\ & \hline \end{aligned}$	S, D	The data of " S " is written to the buffer starting from "D".	5	\times	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
Basic function instructions											
F118	UPIDOWN counter	UDC	S, D	Counts up or down from the value preset in " S " and stores the elapsed value in "D".	5	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
F119	Left/right shift register	LRSR	$\begin{aligned} & \mathrm{D} 1, \\ & \mathrm{D} 2 \end{aligned}$	Shifts one bit to the left or right with the area between "D1" and "D2" as the register.	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Data rotate instructions											
$\begin{aligned} & \hline \text { F120 } \\ & \text { P120 } \\ & \hline \end{aligned}$	16-bit data right rotate	ROR PROR	D, n	Rotates the " n " bits in data of " D " to the right.	5	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F121 } \\ & \text { P121 } \end{aligned}$	16-bit data left rotate	ROL PROL	D, n	Rotates the " n " bits in data of " D " to the left.	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F122 } \\ & \text { P122 } \end{aligned}$	16-bit data right rotate with carry flag (R9009) data	RCR PRCR	D, n	Rotates the " n " bits in 17-bit area consisting of "D" plus the carry flag (R9009) data to the right.	5	O	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
$\begin{aligned} & \text { F123 } \\ & \text { P123 } \end{aligned}$	16-bit data left rotate with carry flag (R9009) data	RCL PRCL	D, n	Rotates the " n " bits in 17-bit area consisting of "D" plus the carry flag (R9009) data to the left.	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F125 } \\ & \text { P125 } \end{aligned}$	32-bit data right rotate	DROR PDROR	D, n	Rotates the number of bits specified by " n " of the double words data (32 bits) specified by $(\mathrm{D}+1, \mathrm{D})$ to the right.	5	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F126 } \\ & \text { P126 } \end{aligned}$	32-bit data left rotate	DROL PDROL	D, n	Rotates the number of bits specified by " n " of the double words data (32 bits) specified by ($D+1, D$) to the left.	5	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F127 } \\ & \text { P127 } \end{aligned}$	32-bit data right rotate with carry flag (R9009) data	DRCR PDRCR	D, n	Rotates the number of bits specified by " n " of the double words data (32 bits) specified by $(D+1, D)$ to the right together with carry flag (R9009) data.	5	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F128 } \\ & \text { P128 } \end{aligned}$	32-bit data left rotate with carry flag (R9009) data	DRCL PDRCL	D, n	Rotates the number of bits specified by " n " of the double words data (32 bits) specified by $(D+1, D)$ to the left together with carry flag (R9009) data.	5	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Bit manipulation instructions											
$\begin{aligned} & \text { F130 } \\ & \text { P130 } \\ & \hline \end{aligned}$	16-bit data bit set	$\begin{aligned} & \text { BTS } \\ & \text { PBTS } \\ & \hline \end{aligned}$	D, n	Sets the value of bit position " n " of the data of "D" to 1.	5	O	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F131 } \\ & \text { P131 } \end{aligned}$	16-bit data bit reset	BTR PBTR	D, n	Sets the value of bit position " n " of the data of " D " to 0 .	5	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F132 } \\ & \text { P132 } \\ & \hline \end{aligned}$	16-bit data invert	$\begin{aligned} & \text { BTI } \\ & \text { PBTI } \end{aligned}$	D, n	Inverts the value of bit position " n " of the data of "D".	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F133 } \\ & \text { P133 } \end{aligned}$	16-bit data bit test	$\begin{aligned} & \hline \text { BTT } \\ & \text { PBTT } \end{aligned}$	D, n	Tests the value of bit position " n " of the data of "D" and outputs the result to R900B.	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F135 } \\ & \text { P135 } \\ & \hline \end{aligned}$	Number of on (1) bits in 16-bit data	$\begin{aligned} & \text { BCU } \\ & \text { PBCU } \end{aligned}$	S, D	Stores the number of on bits in the data of " S " in "D".	5	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F136 } \\ & \text { P136 } \\ & \hline \end{aligned}$	Number of on (1) bits in 32-bit data	$\begin{aligned} & \text { DBCU } \\ & \text { PDBCU } \\ & \hline \end{aligned}$	S, D	Stores the number of on bits in the data of ($\mathrm{S}+1, \mathrm{~S}$) in " D ".	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

[^4]| Num －ber | Name | Boo－ lean | Ope－ rand | Description | 号 | $\begin{aligned} & \text { M } \\ & \text { i } \\ & \frac{1}{\partial} \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { 号 } \\ & \text { 足 } \end{aligned}$ | W | $\begin{aligned} & \times \\ & \text { ㅈ́ㄴ } \end{aligned}$ | N | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basic function instruction | | | | | | | | | | | |
| F137 | $\begin{aligned} & \text { Auxiliary } \\ & \text { timer (16-bit) } \end{aligned}$ | STMR | S，D | Turns on the specified output and R900D after $0.01 \mathrm{~s} \times$ set value． | 5 | O | O | O | 0 | \bigcirc | O |
| Special instructions | | | | | | | | | | | |
| $\begin{aligned} & \text { F138 } \\ & \text { P138 } \end{aligned}$ | Hours，min－ utes and sec－ onds to seconds data | HMSS PHMSS | S，D | Converts the hour，minute and second data of $(S+1, S)$ to seconds data，and the converted data is stored in（ $\mathrm{D}+1, \mathrm{D}$ ）． | 5 | $\begin{array}{\|l\|} \triangle \\ *_{1} \end{array}$ | O | O | 0 | O | 0 |
| $\begin{aligned} & \hline \text { F139 } \\ & \text { P139 } \end{aligned}$ | Seconds to hours， minutes and seconds data | SHMS PSHMS | S，D | Converts the seconds data of（ $\mathrm{S}+1, \mathrm{~S}$ ） to hour，minute and second data， and the converted data is stored in （ $D+1, D$ ）． | 5 | $\begin{array}{\|c\|} \triangle \\ { }_{* 1} \end{array}$ | O | O | 0 | O | O |
| $\begin{aligned} & \hline \text { F140 } \\ & \text { P140 } \end{aligned}$ | $\begin{aligned} & \text { Carry flag } \\ & \text { (R9009) set } \end{aligned}$ | $\begin{aligned} & \hline \text { STC } \\ & \text { PSTC } \end{aligned}$ | － | Turns on the carry flag（R9009）． | 1 | O | 0 | O | 0 | O | 0 |
| $\begin{aligned} & \hline \text { F141 } \\ & \text { P141 } \\ & \hline \end{aligned}$ | Carry flag （R9009）reset | $\begin{aligned} & \hline \text { CLC } \\ & \text { PCLC } \end{aligned}$ | ${ }^{-}$ | Turns off the carry flag（R9009）． | 1 | O | O | O | 0 | O | O |
| $\begin{aligned} & \text { F142 } \\ & \text { P142 } \end{aligned}$ | Watching dog timer update | WDT PWDT | S | The time（allowable scan time for the system）of watching dog timer is changed to＂ S ＂$\times 0.1(\mathrm{~ms}$ ）for that scan． | 3 | \times | \times | \times | \times | \times | \bigcirc |
| $\begin{aligned} & \hline \text { F143 } \\ & \text { P143 } \end{aligned}$ | Partial I／O update | IORF PIORF | D1，D2 | Updates the I／O from the number specified by＂D1＂to the number specified by＂D2＂． | 5 | 0 | O | O | 0 | \bigcirc | 0 |
| F144 | Serial data communica－ tion control | TRNS | S，n | The COM port received flag（R9038）is set to off to enable reception．
 Beginning at＂ S ＂，＂ n ＂bytes of the data registers are sent from the COM port． | 5 | $\begin{gathered} \circ \\ { }_{\star} \end{gathered}$ | \times | \times | \times | O | O |
| $\begin{aligned} & \hline \text { F145 } \\ & \text { P145 } \\ & \hline \end{aligned}$ | Data send | $\begin{aligned} & \hline \text { SEND } \\ & \text { PSEND } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { S1, S2, } \\ & \text { D, } \mathrm{N} \\ & \hline \end{aligned}$ | Sends the data to another station in the network（MEWNET）．（via link unit） | 9 | \times | \times | \times | \times | O | \bigcirc |
| $\begin{aligned} & \hline \text { F146 } \\ & \text { P146 } \\ & \hline \end{aligned}$ | Data receive | $\begin{aligned} & \text { RECV } \\ & \text { PRECV } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { S1, S2, } \\ & \mathrm{N}, \mathrm{D} \\ & \hline \end{aligned}$ | Receives the data to another station in the network（MEWNET）．（via link unit） | 9 | \times | \times | \times | \times | O | \bigcirc |
| $\begin{aligned} & \text { F145 } \\ & \text { P145 } \end{aligned}$ | Data send | SEND | $\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$ | Sends the data to the slave station as the MOD bus master．（via COM port） | 9 | \times | O | $$ | O | \times | \times |
| $\begin{aligned} & \text { F146 } \\ & \text { P146 } \\ & \hline \end{aligned}$ | Data receive | RECV | $\begin{aligned} & \text { S1, S2, } \\ & \mathrm{N}, \mathrm{D} \\ & \hline \end{aligned}$ | Receives the data from the slave station as the MOD bus master．（via COM port） | 9 | \times | O | $\begin{gathered} \hline \triangle \\ * \\ \hline \end{gathered}$ | O | \times | \times |
| $\begin{aligned} & \text { F145 } \\ & \text { P145 } \end{aligned}$ | Data send | SEND | $\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$ | Sends the data to the slave station of the MOD bus master，type II． | 9 | \times | O | $\begin{aligned} & \triangle \triangle \\ & { }_{*} \end{aligned}$ | $\begin{aligned} & \hline \triangle \\ & { }_{*} \end{aligned}$ | \times | \times |
| $\begin{aligned} & \text { F146 } \\ & \text { P146 } \\ & \hline \end{aligned}$ | Data receive | RECV | $\begin{aligned} & \text { S1, S2, } \\ & \mathrm{N}, \mathrm{D} \\ & \hline \end{aligned}$ | Receives the data from the slave station of the MOD bus master，type II． | 9 | \times | O | $\begin{array}{\|c\|} \hline \triangle \\ *_{4} \\ \hline \end{array}$ | $\begin{aligned} & \hline \triangle \\ & * \\ & \hline \end{aligned}$ | \times | \times |
| $\begin{aligned} & \text { F145 } \\ & \text { P145 } \end{aligned}$ | Data send | SEND | $\begin{aligned} & \hline \text { S1, S2, } \\ & \mathrm{D}, \mathrm{~N} \end{aligned}$ | Sends the data to the slave station as the MEWTOCOL master．（via COM port） | 9 | \times | O | $\stackrel{\triangle}{\star}$ | $\stackrel{\triangle}{* 3}$ | \times | \times |
| $\begin{aligned} & \hline \text { F146 } \\ & \text { P146 } \end{aligned}$ | Data receive | RECV | $\begin{aligned} & \text { S1, S2, } \\ & \text { N, D } \end{aligned}$ | Receives the data from the slave station as the MEWTOCOL master．（via COM port） | 9 | \times | 0 | $\stackrel{\triangle}{\star}$ | $\stackrel{\triangle}{\star 3}$ | \times | \times |
| F147 | Printout | PR | S，D | Converts the ASCII code data in the area starting with＂S＂for printing，and outputs it to the word external output relay WY specified by＂D＂． | 5 | O | O | O | \bigcirc | 0 | \bigcirc |
| $\begin{aligned} & \hline \text { F148 } \\ & \text { P148 } \end{aligned}$ | Self－ diagnostic error set | $\begin{aligned} & \hline \text { ERR } \\ & \text { PERR } \end{aligned}$ | $\begin{aligned} & \text { n } \\ & \text { (n: k100 } \\ & \text { to K299) } \end{aligned}$ | Stores the self－diagnostic error number ＂ n ＂in（DT9000），turns R9000 on，and turns on the ERROR LED． | 3 | 0 | 0 | O | 0 | 0 | 0 |
| $\begin{aligned} & \hline \text { F149 } \\ & \text { P149 } \end{aligned}$ | Message display | $\begin{aligned} & \hline \text { MSG } \\ & \text { PMSG } \end{aligned}$ | S | Displays the character constant of＂ S ＂in the connected programming tool． | 13 | O | O | O | O | O | \bigcirc |

：Available，\times ：Not available，$\triangle:$ Not available partially
＊1）The instruction is available for FP0 T32（V2．3 or later）and FP－e．
＊2）This instruction is available for FP0 V1．20 or later and FP－e．
＊3）This instruction is available for FP－X V1．20 or later and FPE 32k type．
＊4）This instruction is available for FP－X V2．50 or later and FPE V3．20 or later．s

Number	Name	Boolean	Operand	Description	$\begin{aligned} & \text { n } \\ & \text { 헤 } \\ & \stackrel{y y}{*} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { i } \\ & \frac{1}{i} \\ & \frac{0}{14} \end{aligned}$	믕	W	$\begin{aligned} & \times \underset{1}{\text { ¹ }} \\ & \text { ì } \end{aligned}$	N	
$\begin{aligned} & \hline \text { F150 } \\ & \text { P150 } \\ & \hline \end{aligned}$	Data read from intelligent unit	READ PREAD	$\begin{aligned} & \text { S1, S2, } \\ & \text { n, D } \end{aligned}$	Reads the data from the intelligent unit.	9	\times	\times	$\begin{gathered} \triangle \\ * 3 \\ \hline \end{gathered}$	\times	O	\bigcirc
$\begin{aligned} & \hline \text { F151 } \\ & \text { P151 } \end{aligned}$	Data write into intelligent unit	WRT PWRT	$\begin{aligned} & \mathrm{S} 1, \mathrm{~S} 2, \\ & \mathrm{n}, \mathrm{D} \end{aligned}$	Writes the data into the intelligent unit.	9	\times	\times	$\begin{aligned} & \triangle \triangle \\ & * 3 \end{aligned}$	\times	O	\bigcirc
$\begin{aligned} & \hline \text { F152 } \\ & \text { P152 } \end{aligned}$	Data read from MEWNET-F slave station	RMRD PRMRD	$\begin{aligned} & \text { S1, S2, } \\ & \text { n, D } \end{aligned}$	Reads the data from the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	\times	X	\times	\times	O	\bigcirc
$\begin{aligned} & \text { F153 } \\ & \text { P153 } \end{aligned}$	Data write into MEWNET-F slave station	RMWT PRMWT	$\begin{aligned} & \text { S1, S2, } \\ & \text { n, D } \end{aligned}$	Writes the data into the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	\times	\times	\times	\times	O	\bigcirc
$\begin{aligned} & \text { F155 } \\ & \text { P155 } \end{aligned}$	Sampling	SMPL PSMPL	-	Starts sampling data.	1	\times	O	$\begin{aligned} & \hline \triangle \\ & * 5 \end{aligned}$	$\stackrel{\triangle}{\triangle}$	\bigcirc	\bigcirc
$\begin{aligned} & \text { F156 } \\ & \text { P156 } \end{aligned}$	Sampling trigger	STRG PSTRG	${ }^{-}$	When the trigger of this instruction turns on, the sampling trace stops.	1	\times	\bigcirc	$\stackrel{\triangle}{*}$	$\begin{aligned} & \triangle \\ & * 4 \end{aligned}$	O	\bigcirc
$\begin{aligned} & \text { F157 } \\ & \text { P157 } \end{aligned}$	Time addition	$\begin{aligned} & \text { CADD } \\ & \text { PCADD } \end{aligned}$	$\begin{array}{ll} \hline \text { S1, } \\ \mathrm{D} & \\ \hline \end{array}$	The time after (S2+1, S2) elapses from the time of ($\mathrm{S} 1+2$, $\mathrm{S} 1+1, \mathrm{~S} 1)$ is stored in $(\mathrm{D}+2, \mathrm{D}+1$, D).	9	$\underset{* 1}{\triangle}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F158 } \\ & \text { P158 } \end{aligned}$	Time subtraction	CSUB PCSUB	$\begin{array}{ll} \hline \text { S1, } & \text { S2, } \\ \mathrm{D} & \end{array}$	The time that results from subtracting ($\mathrm{S} 2+1, \mathrm{~S} 2$) from the time ($\mathrm{S} 1+2, \mathrm{~S} 1+1, \mathrm{~S} 1$) is stored in (D+2, D+1, D).	9	$\stackrel{\triangle}{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F159 } \\ & \text { P159 } \end{aligned}$	Serial port communication	MTRN PMTRN	S, n, D	This is used to send data to an external device through the specified CPU COM port or MCU COM port.	7	\times	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\triangle}{\star}$	$\stackrel{\Delta}{*}$
$\begin{aligned} & \hline \text { F161 } \\ & \text { P161 } \end{aligned}$	MCU serial port reception	MRCV PMRCV	$\begin{array}{ll} \hline \mathrm{S}, & \mathrm{D} 1, \\ \mathrm{D} 2 & \end{array}$	Data is received from external equipment via the COM port of the specified MCU.	7	\times	\times	\times	\times	\triangle $* 2$	$\stackrel{\wedge}{*}$
BIN arithmetic instruction											
$\begin{aligned} & \hline \text { F160 } \\ & \text { P160 } \end{aligned}$	Double word (32-bit) data square root	$\begin{aligned} & \hline \text { DSQR } \\ & \text { PDSQR } \end{aligned}$	S, D	$\sqrt{(S)} \rightarrow(\mathrm{D})$	7	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
High speed counter/Pulse output instruction for FP0, FP-e											
F0	High-speed counter and Pulse output controls	MV	S, DT9052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT9052.	5	\bigcirc					
1	Change and read of the elapsed value of high-speed counter and Pulse output	DMV	$\begin{aligned} & \hline \text { S, } \\ & \text { DT9044 } \end{aligned}$	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area.	7	\bigcirc					
			$\begin{aligned} & \text { DT9044, } \\ & \text { D } \end{aligned}$	Transfers value in high-speed counter and Pulse output elapsed value area to ($\mathrm{D}+1, \mathrm{D}$).	7	\bigcirc					
F166	High-speed counter output set (with channel specification)	HC1S	n, S, Yn	Turns output Yn on when the elapsed value of the built-in highspeed counter reaches the target value of ($\mathrm{S}+1, \mathrm{~S}$).	11	\bigcirc					

: Available, \times : Not available, $\triangle:$ Not available partially
*1) The instruction is available for FP0 T32 (V2.3 or later) and FP-e.
*2) The instruction is available for FP2/FP2SH Ver. 1.5 or later, and the pulse execution type can be specified. FP10SH cannot be used.
*3) This instruction is available for FP Σ Ver. 2.0 or later.
*4) This instruction is only available for FP-X Ver.2.0 or later.
*5) This instruction is available for FPE Ver. 3.10 or later.

Number	Name	Boolean	Operand	Description	-	-	$\stackrel{\text { 증 }}{\text { 뇬 }}$	N	$\begin{aligned} & \times \\ & \text { ì } \\ & \text { it } \end{aligned}$	~	
F174	Pulse output (Selectable data table control operation)	SPOH	S, n	Outputs the pulses from the specified channel according to the data table specified by S .	5		\bigcirc				\bigcirc
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5		\bigcirc				\checkmark
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5		\times				\checkmark
F177	Pulse output (Home return)	HOME	S, n	Performs the home return according to the specified data table.	7	\checkmark	0				
F178	Input pulse measurement (No. of pulses, cycle for input pulses)	PLSM	S1, S2, D	Measures the number of pulses and cycle of pulses to be input to the high-speed counter of the specified channel.	5		\bigcirc			\checkmark	\checkmark

Number	Name	Boo- lean	Operand	Description	$\begin{aligned} & \frac{0}{2} \\ & \stackrel{y}{0} \end{aligned}$		$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	잔	N	
High speed counter/Pulse output instruction for FPE/FP-X											
F0	High-speed counter and Pulse output controls	MV	S, DT90052	Performs high-speed counter and Pulse output controls according to the control code specified by " S ". The control code is stored in DT90052.	5			\bigcirc	\bigcirc		\rangle
F1	Change and read of the elapsed value of highspeed counter and Pulse output	DMV	$\begin{aligned} & \text { FPE: } \\ & \text { S, DT90044 } \\ & \text { FP-X: } \\ & \text { S, DT90300 } \end{aligned}$	Transfers (S+1, S) to highspeed counter and Pulse output elapsed value area (DT90045, DT90044).	7			\bigcirc	\bigcirc		
			$\begin{aligned} & \text { FPE: } \\ & \text { DT90044, D } \\ & \text { FP-X: } \\ & \text { DT90300, D } \end{aligned}$	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7			O	\bigcirc		
F166	Target value much on (with channel specification)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the built-in high-speed counter reaches the target value of (S+1, S).	11			O	\bigcirc		
F167	Target value much off (with channel specification)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the built-in high-speed counter reaches the target value of ($\mathrm{S}+1, \mathrm{~S}$).	11			\bigcirc	\bigcirc		
F171	Pulse output (with channel specification) (Trapezoidal control and home return)	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5			\bigcirc	\bigcirc		
F172	Pulse output (with channel specification) (JOG operation)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S .	5			\bigcirc	\bigcirc		
F173	PWM output (with channel specification)	PWMH	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5			\bigcirc	\bigcirc		
F174	Pulse output (with channel specification) (Selectable data table control operation)	SPOH	S, n	Outputs the pulses from the specified channel according to the data table specified by S .	5			\bigcirc	\bigcirc		
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5			\triangle $* 2$	\bigcirc		
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5			\triangle $* 2$	\times		

: Available, X : Not available, $\triangle:$ Not available partially
*1) The elapsed value area differs depending on used channels.
*2) This instruction is available for FPE C32T2, C28P2, C32T2H and C28P2H.

Num -ber	Name	Boolean	Ope- rand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{y}{0} \\ & \dot{\omega} \end{aligned}$	$\begin{aligned} & 0 \\ & i \\ & \frac{1}{11} \\ & \frac{0}{1} \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { 뜽 } \\ & \text { 묘 } \end{aligned}$	W	¢	N	
Screen display instructions											
F180	FP-e screen display registration	SCR	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, S4 } \end{aligned}$	Register the screen displayed on the FP-e.	9	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\times	\times	\times	\times	\times
F181	FP-e screen display switching	DSP	S	Specify the screen to be displayed on the FP-e.	3	\triangle $* 1$	\times	\times	\times	\times	\times
Basic function instruction											
F182	Time constant processing	FILTR	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	Executes the filter processing for the specified input.	9	\times	\bigcirc	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	$\begin{aligned} & \triangle \\ & * 3 \end{aligned}$	\times	\times
F183	Auxiliary timer (32-bit)	DSTM	S, D	Turn on the specified output and R900D after $0.01 \mathrm{~s} . \times$ set value.	7	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{\triangle}{*} 4$
Data transfer instructions											
$\begin{aligned} & \hline \text { F190 } \\ & \text { P190 } \\ & \hline \end{aligned}$	Three 16-bit data move	MV3 PMV3	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { (S1) } \rightarrow(\mathrm{D}),(\mathrm{S} 2) \rightarrow(\mathrm{D}+1), \\ & (\mathrm{S} 3) \rightarrow(\mathrm{D}+2) \end{aligned}$	10	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F191 } \\ & \text { P191 } \end{aligned}$	Three 32-bit data move	DMV3 PDMV3	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}),(\mathrm{S} 2+1, \\ & \mathrm{S} 2) \rightarrow(\mathrm{D}+3, \mathrm{D}+2),(\mathrm{S} 3+1, \\ & \mathrm{S} 3) \rightarrow(\mathrm{D}+5, \mathrm{D}+4) \end{aligned}$	16	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Logic operation instructions											
$\begin{aligned} & \text { F215 } \\ & \text { P215 } \end{aligned}$	32-bit data AND	DAND PDAND	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND (S2+1, } \\ & \mathrm{S} 2) \rightarrow(\mathrm{D}+1, \\ & \mathrm{D}) \end{aligned}$	7	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F216 } \\ & \text { P216 } \end{aligned}$	32-bit data OR	DOR PDOR	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { (S1+1, S1) OR }(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \\ & \mathrm{D}) \end{aligned}$	12	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F217 } \\ & \text { P217 } \end{aligned}$	32-bit data XOR	$\begin{aligned} & \text { DXOR } \\ & \text { PDXOR } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \{(\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND }(\overline{\mathrm{S} 2+1, \mathrm{~S} 2)\}} \text { OR } \\ & \{(\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND }(\mathrm{S} 2+1, \\ & \mathrm{S} 2)\} \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	12	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \hline \text { F218 } \\ & \text { P218 } \end{aligned}$	32-bit data XNR	DXNR PDXNR	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \{(\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND }(\mathrm{S} 2+1, \mathrm{~S} 2)\} \text { OR } \\ & \{(\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND }(\mathrm{S} 2+1, \\ & \mathrm{S} 2)\} \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	12	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F219 } \\ & \text { P219 } \end{aligned}$	Double word (32-bit) data unites	DUNI PDUNI	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \{(\mathrm{S} 1+1, \mathrm{~S} 1) \text { AND (S3+1, S3) }) \text { OR } \\ & \{(\mathrm{S} 2+1, \mathrm{~S} 2) \text { AND }(\mathrm{S} 3+1, \\ & \mathrm{S} 3)\} \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	16	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Data conversion instructions											
$\begin{aligned} & \text { F230 } \\ & \text { P230 } \end{aligned}$	Time data \rightarrow second conversion	TMSEC PTMSEC	S, D	The specified time data (a date and time) is changed to the second data.	6	\times	\bigcirc	$\stackrel{\triangle}{*}$	\triangle $* 6$	\triangle $* 7$	\triangle $* 7$
$\begin{aligned} & \text { F231 } \\ & \text { P231 } \end{aligned}$	Second data \rightarrow time conversion	SECTM PSECTM	S, D	The specified second data is changed into time data (a date and time).	6	\times	\bigcirc	$\stackrel{\triangle}{*}$	$\stackrel{\triangle}{\triangle}$	$\stackrel{\triangle}{\triangle}$	$\stackrel{\triangle}{\triangle}$

\bigcirc : Available, X : Not available, \triangle : Not available partially
*1) This instruction is available for FP-e only.
*2) This instruction is available for FPE Ver. 3.10 or later.
*3) This instruction is only available for FP-X Ver.2.0 or later.
*4) This instruction is available for FP10SH Ver. 3.10 or later.
*5) This instruction is available for FPE 32 k type.
*6) This instruction is available for FP-X Ver. 1.13 or later.
*7) This instruction is available for FP2/FP2SH Ver. 1.5 or later.FP10SH cannot be used.

Number	Name	Boolean	Operand	Description	$\begin{aligned} & n \\ & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{1} \\ & \frac{0}{0} \\ & \text { 11 } \end{aligned}$	$\begin{aligned} & \text { 뜽 } \\ & \text { 묜 } \end{aligned}$	W	잔	N	
$\begin{aligned} & \text { F235 } \\ & \text { P235 } \end{aligned}$	16-bit binary data \rightarrow Gray code conversion	$\begin{aligned} & \text { GRY } \\ & \text { PGRY } \end{aligned}$	S, D	Converts the 16-bit binary data of " S " to gray codes, and the converted result is stored in the " D ".	6	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F236 } \\ & \text { P236 } \end{aligned}$	32-bit binary data \rightarrow Gray code conversion	DGRY PDGRY	S, D	Converts the 32-bit binary data of $(\mathrm{S}+1, \mathrm{~S})$ to gray code, and the converted result is stored in the (D+1, D).	8	\times	\bigcirc	O	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F237 } \\ & \text { P237 } \end{aligned}$	16-bit gray code \rightarrow binary data conversion	$\begin{aligned} & \text { GBIN } \\ & \text { PGBIN } \end{aligned}$	S, D	Converts the gray codes of " S " to binary data, and the converted result is stored in the " D ".	6	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F238 } \\ & \text { P238 } \end{aligned}$	32-bit gray code \rightarrow binary data conversion	DGBIN PDGBIN	S, D	Converts the gray codes of (S+1, S) to binary data, and the converted result is stored in the ($\mathrm{D}+1, \mathrm{D}$).	8	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F240 } \\ & \text { P240 } \end{aligned}$	Bit line to bit column conversion	$\begin{aligned} & \text { COLM } \\ & \text { PCOLM } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	The values of bits 0 to 15 of " S " are stored in bit " n " of (D to $\mathrm{DC}+15$).	8	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F241 } \\ & \text { P241 } \end{aligned}$	Bit column to bit line conversion	$\begin{aligned} & \text { LINE } \\ & \text { PLINE } \end{aligned}$	$\begin{aligned} & \mathrm{S}, \mathrm{n}, \\ & \mathrm{D} \end{aligned}$	The values of bit " n " of (S) to ($\mathrm{S}+15$) are stored in bits 0 to 15 of " D ".	8	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
F250	Binary data \rightarrow ASCII conversion	BTOA	$\begin{aligned} & \text { S1, } \\ & \text { S2, n, } \\ & \text { D } \end{aligned}$	Converts multiple binary data to multiple ASCII data.	12	\times	\bigcirc	$\stackrel{\triangle}{* 1}$	O	\times	\times
F251	ASCII \rightarrow binary data conversion	ATOB	$\begin{aligned} & \text { S1, } \\ & \text { S2, n, } \\ & \text { D } \end{aligned}$	Converts multiple ASCII data to multiple binary data.	12	\times	\bigcirc	\triangle	\bigcirc	\times	\times
F252	ASCII data check	ACHK	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, n } \end{aligned}$	Checks the ASCII data strings to be used in F251 (ATOB) instruction.	10	\times	\bigcirc	$\begin{aligned} & \hline \triangle \\ & \text { *2 } \end{aligned}$	$\begin{aligned} & \hline \triangle \\ & \text { *3 } \\ & \hline \end{aligned}$	\times	\times
Character strings instructions											
$\begin{aligned} & \hline \text { F257 } \\ & \text { P257 } \end{aligned}$	Comparing character strings	SCMP	$\begin{aligned} & \mathrm{S} 1, \\ & \mathrm{~S} 2 \end{aligned}$	These instructions compare two specified character strings and output the judgment results to a special internal relay.	10	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F258 } \\ & \text { P258 } \\ & \hline \end{aligned}$	Character string coupling	SADD	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	These instructions couple one character string with another.	12	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F259 } \\ & \text { P259 } \end{aligned}$	Number of characters in a character string	LEN	S, D	These instructions determine the number of characters in a character string.	6	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F260 } \\ & \text { P260 } \end{aligned}$	Search for character string	SSRC	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The specified character is searched in a character string.	10	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F261 } \\ & \text { P261 } \end{aligned}$	Retrieving data from character strings (right side)	RIGHT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	These instructions retrieve a specified number of characters from the right side of the character string.	8	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F262 } \\ & \text { P262 } \end{aligned}$	Retrieving data from character strings (left side)	LEFT	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	These instructions retrieve a specified number of characters from the left side of the character string.	8	\times	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F263 } \\ & \text { P263 } \end{aligned}$	Retrieving a character string from a character string	MIDR	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3, D } \end{aligned}$	These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string.	10	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F264 } \\ & \text { P264 } \end{aligned}$	Writing a character string to a character string	MIDW	$\begin{aligned} & \text { S1, } \\ & \text { S2, }, \\ & \text { n } \end{aligned}$	These instructions write a specified number of characters from a character string to a specified position in the character string.	12	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F265 } \\ & \text { P265 } \end{aligned}$	Replacing character strings	SREP	$\begin{aligned} & \mathrm{S}, \mathrm{D}, \\ & \mathrm{p}, \mathrm{n} \end{aligned}$	A specified number of characters in a character string are rewritten, starting from a specified position in the character string.	12	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

\bigcirc : Available, \times : Not available, \triangle : Not available partially
*1) This instruction is available for FPE 32 k type.
*2) This instruction is available for FPE Ver. 3.10 or later.
*3) This instruction is only available for FP-X Ver.2.0 or later.

Number	Name	Boolean	Operand	Description	$\begin{aligned} & n \\ & \text { n } \\ & \stackrel{y}{\omega} \end{aligned}$		$\begin{aligned} & \text { 믕 } \\ & \text { 믄 } \end{aligned}$	씊	$\begin{aligned} & x \\ & \text { 민 } \end{aligned}$	N	
Integer type data processing instructions											
$\begin{aligned} & \text { F270 } \\ & \text { P270 } \end{aligned}$	Maximum value (word data (16-bit))	MAX PMAX	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches the maximum value in the word data table between the "S1" and " S 2 ", and stores it in the " D ". The address relative to " S 1 " is stored in "D+1".	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
$\begin{aligned} & \text { F271 } \\ & \text { P271 } \end{aligned}$	Maximum value (double word data (32bit))	DMAX PDMAX	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches for the maximum value in the double word data table between the area selected with "S1" and "S2", and stores it in the " D ". The address relative to " 51 " is stored in " $D+2$ ".	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \hline \text { F272 } \\ & \text { P272 } \end{aligned}$	Minimum value (word data (16bit))	MIN PMIN	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches for the minimum value in the word data table between the area selected with "S1" and "S2", and stores it in the " D ". The address relative to " S 1 " is stored in " $\mathrm{D}+1$ ".	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F273 } \\ & \text { P273 } \end{aligned}$	Minimum value (double word data (32-bit))	DMIN PDMIN	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	Searches for the minimum value in the double word data table between the area selected with "S1" and "S2", and stores it in the " D ". The address relative to " $S 1$ " is stored in " $D+2$ ".	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F275 } \\ & \text { P275 } \end{aligned}$	Total and mean values (word data (16bit))	MEAN PMEAN	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	The total value and the mean value of the word data with sign from the area selected with " S 1 " to " S 2 " are obtained and stored in the " D ".	8	$\stackrel{\triangle}{*_{1}}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F276 } \\ & \text { P276 } \end{aligned}$	Total and mean values (double word data (32-bit))	DMEAN PDMEAN	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	The total value and the mean value of the double word data with sign from the area selected with " S 1 " to " S 2 " are obtained and stored in the "D".	8	$\stackrel{\triangle}{*_{1}}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F277 } \\ & \text { P277 } \end{aligned}$	Sort (word data (16-bit))	SORT PSORT	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F278 } \\ & \text { P278 } \end{aligned}$	Sort (double word data (32bit))	DSORT PDSORT	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	The double word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F282 } \\ & \text { P282 } \end{aligned}$	Scaling of 16-bit data	SCAL PSCAL	$\begin{aligned} & \text { S1, } \\ & \text { S2, D } \end{aligned}$	The output value Y is found for the input value X by performing scaling for the given data table.	8	$\stackrel{\triangle}{{ }_{* 1}}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
$\begin{aligned} & \text { F283 } \\ & \text { P283 } \end{aligned}$	Scaling of 32-bit data	DSCAL PDSCAL	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	The output value Y is found for the input value X by performing scaling for the given data table.	10	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0
$\begin{aligned} & \text { F284 } \\ & \text { P284 } \end{aligned}$	Inclination output of 16-bit data	RAMP	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, } \\ & \text { S3, D } \\ & \hline \end{aligned}$	Executes the linear output for the specified time from the specified initial value to the target value.	10	\times	\bigcirc	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	\times	\times
Integer type non-linear function instructions											
$\begin{aligned} & \text { F285 } \\ & \text { P285 } \end{aligned}$	Upper and Iower limit control (16-bit data)	LIMT PLIMT	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, } \\ & \text { S3, D } \end{aligned}$	When S1>S3, S1 \rightarrow D When S1<S3, S2 \rightarrow D When S1<or = S3<or = S2, S3 \rightarrow D	10	$\stackrel{\triangle}{\star 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O

: Available, \times : Not available, $\triangle:$ Not available partially
*1) This instruction is only available for FP-e Ver.1.2 or later.
*2) This instruction is only available for FP-X Ver. 2.0 or later, and FPE Ver. 3.10 or later.

Number	Name	Boolean	Operand	Description	$\begin{aligned} & n \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ì } \\ & \text { ì } \\ & \frac{1}{0} \\ & \frac{1}{11} \end{aligned}$	$\begin{aligned} & \text { 뜽 } \\ & \text { 문 } \end{aligned}$	N	잔	N	ェ
$\begin{aligned} & \text { F286 } \\ & \text { P286 } \end{aligned}$	Upper and lower limit control (32-bit data)	DLIMT PDLIMT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 1+1 \text {, } \\ & \mathrm{S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 2+1 \text {, } \\ & \mathrm{S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<\mathrm{or}=(\mathrm{S} 3+1, \mathrm{~S} 3)<\text { or } \\ & =(\mathrm{S} 2+1, \mathrm{~S} 2),(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	16	$\stackrel{\triangle}{* 1}$	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F287 } \\ & \text { P287 } \end{aligned}$	Deadband control (16-bit data)	BAND PBAND	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	When S1>S3, S3-S1 \rightarrow D When S2<S3, S3-S2 \rightarrow D When $\mathrm{S} 1<\mathrm{or}=\mathrm{S} 3<$ or $=\mathrm{S} 2,0 \rightarrow \mathrm{D}$	10	$\stackrel{\triangle}{* 1}$	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F288 } \\ & \text { P288 } \end{aligned}$	Deadband control (32-bit data)	DBAND PDBAND	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3)-(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3),(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<o r=(\mathrm{S} 3+1, \mathrm{~S} 3)<\text { or } \\ & =(\mathrm{S} 2+1, \mathrm{~S} 2), 0 \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	16	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \hline \text { F289 } \\ & \text { P289 } \end{aligned}$	Zone control (16-bit data)	ZONE PZONE	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	When $\mathrm{S} 3<0, \mathrm{~S} 3+\mathrm{S} 1 \rightarrow \mathrm{D}$ When $\mathrm{S} 3=0,0 \rightarrow \mathrm{D}$ When $\mathrm{S} 3>0, \mathrm{~S} 3+\mathrm{S} 2 \rightarrow \mathrm{D}$	10	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	O	O	\bigcirc
$\begin{aligned} & \text { F290 } \\ & \text { P290 } \end{aligned}$	Zone control (32-bit data)	$\begin{aligned} & \text { DZONE } \\ & \text { PDZONE } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(S 3+1, S 3)<0,(S 3+1, \\ & S 3)+(S 1+1, S 1) \rightarrow(D+1, D) \\ & \text { When }(S 3+1, S 3)=0,0 \rightarrow(D+1, D) \\ & \text { When }(S 3+1, S 3)>0,(S 3+1, \\ & S 3)+(S 2+1, S 2) \rightarrow(D+1, D) \end{aligned}$	16	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
BCD type real number operation instructions											
$\begin{aligned} & \text { F300 } \\ & \text { P300 } \\ & \hline \end{aligned}$	BCD type sine operation	$\begin{aligned} & \text { BSIN } \\ & \text { PBSIN } \end{aligned}$	S, D	$\mathrm{SIN}(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	\times	\times	\times	\times	O	\bigcirc
$\begin{aligned} & \text { F301 } \\ & \text { P301 } \end{aligned}$	BCD type cosine operation	$\begin{aligned} & \text { BCOS } \\ & \text { PBCOS } \end{aligned}$	S, D	COS(S1+1, S1) $\rightarrow(\mathrm{D}+1, \mathrm{D})$	6	\times	\times	\times	\times	0	\bigcirc
$\begin{aligned} & \text { F302 } \\ & \text { P302 } \end{aligned}$	BCD type tangent operation	BTAN PBTAN	S, D	$\mathrm{TAN}(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	\times	\times	\times	\times	\bigcirc	\bigcirc
$\begin{aligned} & \text { F303 } \\ & \text { P303 } \end{aligned}$	BCD type arcsine operation	BASIN PBASIN	S, D	$\mathrm{SIN}^{-1}(\mathrm{~S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	\times	\times	\times	\times	\bigcirc	\bigcirc
$\begin{aligned} & \text { F304 } \\ & \text { P304 } \end{aligned}$	BCD type arccosine operation	$\begin{aligned} & \text { BACOS } \\ & \text { PBACOS } \end{aligned}$	S, D	$\mathrm{COS}^{-1}(\mathrm{~S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	\times	\times	\times	\times	O	\bigcirc
$\begin{aligned} & \text { F305 } \\ & \text { P305 } \end{aligned}$	BCD type arctangent operation	BATAN PBATAN	S, D	$\mathrm{TAN}^{-1}(\mathrm{~S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D})$	6	\times	\times	\times	\times	O	\bigcirc
Floating-point type real number operation instructions											
$\begin{aligned} & \hline \text { F309 } \\ & \text { P309 } \end{aligned}$	Floating-point type data move	$\begin{aligned} & \hline \text { FMV } \\ & \text { PFMV } \end{aligned}$	S, D	$(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	8	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F310 } \\ & \text { P310 } \end{aligned}$	Floating-point type data addition	$\begin{aligned} & \hline \text { F+ } \\ & \text { PF+ } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)+(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	$\stackrel{\triangle}{* 2}$	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \text { F311 } \\ & \text { P311 } \end{aligned}$	Floating-point type data subtraction	$\begin{aligned} & \text { F- } \\ & \text { PF- } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F312 } \\ & \text { P312 } \end{aligned}$	Floating-point type data multiplication	$\begin{aligned} & \hline \text { F* }^{\prime} \\ & \text { PF* } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \times(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	$\begin{aligned} & \triangle \\ & * 2 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc
$\begin{aligned} & \hline \text { F313 } \\ & \text { P313 } \end{aligned}$	Floating-point type data division	$\begin{aligned} & \hline \text { F\% } \\ & \text { PF\% } \end{aligned}$	$\begin{aligned} & \text { S1, S2, } \\ & \mathrm{D} \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1) \div(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D})$	14	$\begin{aligned} & \triangle \\ & \star 2 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc

\bigcirc : Available, X : Not available, \triangle : Not available partially
*1) This instruction is only available for FP-e Ver.1.2 or later.
*2) This instruction is available for FP-e Ver.1.21 or later, and FP0 V2.1 or later.

Number	Name	Boolean	Operand	Description	$\begin{aligned} & \text { n } \\ & \stackrel{2}{む} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & 0 . \\ & i \\ & \frac{1}{1} \\ & \frac{0}{1} \end{aligned}$	$\begin{aligned} & \text { 뜽 } \\ & \text { 묜 } \end{aligned}$	W	$\begin{aligned} & \times \\ & \text { ì } \end{aligned}$	$\begin{gathered} \text { N } \\ \text { 파 } \end{gathered}$	
$\begin{aligned} & \text { F314 } \\ & \text { P314 } \end{aligned}$	Floating-point type data sine operation	SIN PSIN	S, D	$\mathrm{SIN}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F315 } \\ & \text { P315 } \end{aligned}$	Floating-point type data cosine operation	$\begin{aligned} & \text { COS } \\ & \text { PCOS } \end{aligned}$	S, D	$\mathrm{COS}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \triangle \\ & * 1 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F316 } \\ & \text { P316 } \end{aligned}$	Floating-point type data tangent operation	TAN PTAN	S, D	$\mathrm{TAN}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \triangle \\ & * 1 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F317 } \\ & \text { P317 } \end{aligned}$	Floating-point type data arcsine operation	ASIN PASIN	S, D	$\mathrm{SIN}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\stackrel{\triangle}{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F318 } \\ & \text { P318 } \end{aligned}$	Floating-point type data arccosine operation	$\begin{aligned} & \text { ACOS } \\ & \text { PACOS } \end{aligned}$	S, D	$\mathrm{COS}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\stackrel{\triangle}{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F319 } \\ & \text { P319 } \end{aligned}$	Floating-point type data arctangent operation	ATAN PATAN	S, D	$\mathrm{TAN}^{-1}(\mathrm{~S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\stackrel{\triangle}{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F320 } \\ & \text { P320 } \end{aligned}$	Floating-point type data natural logarithm	$\begin{aligned} & \text { LN } \\ & \text { PLN } \end{aligned}$	S, D	$\mathrm{LN}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	\triangle	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F321 } \\ & \text { P321 } \end{aligned}$	Floating-point type data exponent	$\begin{aligned} & \text { EXP } \\ & \text { PEXP } \end{aligned}$	S, D	$\mathrm{EXP}(\mathrm{S}+1, \mathrm{~S}) \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{aligned} & \triangle \\ & * 1 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F322 } \\ & \text { P322 } \end{aligned}$	Floating-point type data logarithm	$\begin{aligned} & \text { LOG } \\ & \text { PLOG } \end{aligned}$	S, D	LOG(S+1, S) \rightarrow (D+1, D)	10	$\begin{gathered} \triangle \\ * 1 \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F323 } \\ & \text { P323 } \end{aligned}$	Floating-point type data power	PWR PPWR	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, D } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)^{\wedge}(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \\ & \mathrm{D}) \end{aligned}$	14	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F324 } \\ & \text { P324 } \\ & \hline \end{aligned}$	Floating-point type data square root	$\begin{aligned} & \hline \text { FSQR } \\ & \text { PFSQR } \\ & \hline \end{aligned}$	S, D	$\sqrt{(S+1, S)} \rightarrow(\mathrm{D}+1, \mathrm{D})$	10	$\begin{gathered} \triangle \\ * 1 \\ \hline \end{gathered}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F325 } \\ & \text { P325 } \end{aligned}$	16-bit integer data to floating-point type data conversion	$\begin{aligned} & \text { FLT } \\ & \text { PFLT } \end{aligned}$	S, D	Converts the 16-bit integer data with sign specified by "S" to real number data, and the converted data is stored in " D ".	6	$\begin{aligned} & \triangle \\ & * 1 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F326 } \\ & \text { P326 } \end{aligned}$	32-bit integer data to floating-point type data conversion	DFLT PDFLT	S, D	Converts the 32-bit integer data with sign specified by $(\mathrm{S}+1, \mathrm{~S})$ to real number data, and the converted data is stored in ($\mathrm{D}+1$, D).	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F327 } \\ & \text { P327 } \end{aligned}$	Floating-point type data to 16 -bit integer conversion (the largest integer not exceeding the floating-point type data)	INT PINT	S, D	Converts real number data specified by $(\mathrm{S}+1, \mathrm{~S})$ to the 16bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in "D".	8	$\begin{aligned} & \triangle \\ & * 1 \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F328 } \\ & \text { P328 } \end{aligned}$	Floating-point type data to 32-bit integer conversion (the largest integer not exceeding the floating-point type data)	DINT PDINT	S, D	Converts real number data specified by $(S+1, S)$ to the 32bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in ($D+1$, D).	8	$\begin{aligned} & \triangle \\ & { }_{* 1} \end{aligned}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

\bigcirc : Available, X : Not available, \triangle : Not available partially
*1) This instruction is available for FP-e Ver.1.21 or later, and FP0 V2.1 or later.

Number	Name	Boolean	Operand	Description	発	$\begin{aligned} & \text { M } \\ & \frac{1}{1} \\ & \text { ㅇ } \\ & \text { in } \end{aligned}$		带	$\begin{aligned} & \times \\ & \text { 면 } \end{aligned}$	N	
$\begin{aligned} & \text { F329 } \\ & \text { P329 } \end{aligned}$	Floating-point type data to 16-bit integer conversion (rounding the first decimal point down to integer)	$\begin{aligned} & \text { FIX } \\ & \text { PFIX } \end{aligned}$	S, D	Converts real number data specified by $(\mathrm{S}+1, \mathrm{~S})$ to the 16 -bit integer data with sign (rounding the first decimal point down), and the converted data is stored in " D ".	8	$\begin{array}{\|c} \triangle \\ \star_{1} \end{array}$	O	\bigcirc	O	\bigcirc	O
$\begin{aligned} & \text { F330 } \\ & \text { P330 } \end{aligned}$	Floating-point type data to 32-bit integer conversion (rounding the first decimal point down to integer)	$\begin{aligned} & \text { DFIX } \\ & \text { PDFIX } \end{aligned}$	S, D	Converts real number data specified by $(\mathrm{S}+1, \mathrm{~S})$ to the 32 -bit integer data with sign (rounding the first decimal point down), and the converted data is stored in ($D+1, D$).	8	$\begin{array}{\|c} \triangle \\ { }_{* 1} \end{array}$	O	0	O	-	\bigcirc
$\begin{aligned} & \text { F331 } \\ & \text { P331 } \end{aligned}$	Floating-point type data to 16-bit integer conversion (rounding the first decimal point off to integer)	ROFF PROFF	S, D	Converts real number data specified by $(\mathrm{S}+1, \mathrm{~S})$ to the 16 -bit integer data with sign (rounding the first decimal point off), and the converted data is stored in " D ".	8	$\begin{array}{\|c} \triangle \\ { }_{* 1} \end{array}$	O	\bigcirc	O	-	\bigcirc
$\begin{aligned} & \text { F332 } \\ & \text { P332 } \end{aligned}$	Floating-point type data to 32-bit integer conversion (rounding the first decimal point off to integer)	DROFF PDROFF	S, D	Converts real number data specified by ($\mathrm{S}+1, \mathrm{~S}$) to the 32-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in (D+1, D).	8	$\begin{array}{\|c} \triangle \\ *_{1} \end{array}$	-	\bigcirc	O	\bigcirc	-
$\begin{aligned} & \text { F333 } \\ & \text { P333 } \end{aligned}$	Floating-point type data roundding the first decimal point down	$\begin{aligned} & \text { FINT } \\ & \text { PFINT } \end{aligned}$	S, D	The decimal part of the real number data specified in $(\mathrm{S}+1, \mathrm{~S})$ is rounded down, and the result is stored in ($\mathrm{D}+1, \mathrm{D}$).	8	$\begin{array}{\|c} \triangle \\ *_{1} \end{array}$	O	\bigcirc	O	O	-
$\begin{aligned} & \hline \text { F334 } \\ & \text { P334 } \end{aligned}$	Floating-point type data roundding the first decimal point off	$\begin{aligned} & \hline \text { FRINT } \\ & \text { PFRINT } \end{aligned}$	S, D	The decimal part of the real number data stored in $(\mathrm{S}+1, \mathrm{~S})$ is rounded off, and the result is stored in ($\mathrm{D}+1$, D).	8	$\begin{array}{\|c} \triangle \\ \star_{1} \end{array}$	O	\bigcirc	0	\bigcirc	\bigcirc
$\begin{aligned} & \text { F335 } \\ & \text { P335 } \end{aligned}$	Floating-point type data sign changes	$\begin{aligned} & \mathrm{F}+\mathrm{l-} \\ & \mathrm{PF}+\mathrm{l} \end{aligned}$	S, D	The real number data stored in ($\mathrm{S}+1$, S) is changed the sign, and the result is stored in ($\mathrm{D}+1, \mathrm{D}$).	8	$\begin{array}{\|c} \triangle \\ *_{1} \end{array}$	O	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F336 } \\ & \text { P336 } \end{aligned}$	Floating-point type data absolute	FABS PFABS	S, D	Takes the absolute value of real number data specified by ($\mathrm{S}+1, \mathrm{~S}$), and the result (absolute value) is stored in (D+1, D).	8	$\begin{array}{\|l} \triangle \\ \star_{1} \end{array}$	O	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \text { F337 } \\ & \text { P337 } \end{aligned}$	Floating-point type data degree \rightarrow radian	RAD PRAD	S, D	The data in degrees of an angle specified in $(S+1, S)$ is converted to radians (real number data), and the result is stored in ($\mathrm{D}+1, \mathrm{D}$).	8	$\begin{array}{\|c} \triangle \\ \star_{1} \end{array}$	O	\bigcirc	O	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F338 } \\ & \text { P338 } \end{aligned}$	Floating-point type data radian \rightarrow degree	$\begin{aligned} & \hline \text { DEG } \\ & \text { PDEG } \end{aligned}$	S, D	The angle data in radians (real number data) specified in $(\mathrm{S}+1, \mathrm{~S})$ is converted to angle data in degrees, and the result is stored in ($\mathrm{D}+1, \mathrm{D}$).	8	$\begin{array}{\|c} \triangle \\ \star_{1} \end{array}$	O	\bigcirc	O	\bigcirc	\bigcirc
Floatin	-point type real num	er data pr	essing	instructions							
$\begin{aligned} & \text { F345 } \\ & \text { P345 } \end{aligned}$	Floating-point type data compare	$\begin{aligned} & \text { FCMP } \\ & \text { PFCMP } \end{aligned}$	$\begin{aligned} & \text { S1, } \\ & \text { S2 } \end{aligned}$	$\begin{aligned} & (\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \text { R900A: on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)=(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \text { R900B on } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}: \text { on } \end{aligned}$	10	\times	O	0	0	O	\bigcirc
$\begin{aligned} & \text { F346 } \\ & \text { P346 } \end{aligned}$	Floating-point type data band compare	FWIN PFWIN	$\begin{aligned} & \text { S1, } \\ & \text { S2, } \\ & \text { S3 } \end{aligned}$	$(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow$ R900A: on $(\mathrm{S} 2+1, \mathrm{~S} 2)<$ or $=(\mathrm{S} 1+1, \mathrm{~S} 1)<$ or $=(\mathrm{S} 3+1, \mathrm{~S} 3) \rightarrow \mathrm{R} 900 \mathrm{~B}$ on $(\mathrm{S} 1+1, \mathrm{~S} 1)<(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow \mathrm{R} 900 \mathrm{C}:$ on	14	\times	O	\bigcirc	0	\bigcirc	\bigcirc

Available, X : Not available, $\triangle:$ Not available partially
*1) This instruction is available for FP-e Ver.1.21 or later, and FP0 V2.1 or later.

Number	Name	Boolean	Ope- rand	Description	$\begin{aligned} & n \\ & 0 \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { í } \\ & \frac{1}{1!} \\ & \frac{1}{0} \\ & \frac{1}{11} \end{aligned}$	$\begin{aligned} & \text { 뜽 } \\ & \text { 믄 } \end{aligned}$		$\begin{aligned} & x \\ & \text { 면 } \end{aligned}$	N	
$\begin{aligned} & \text { F347 } \\ & \text { P347 } \end{aligned}$	Floating-point type data upper and lower limit control	FLIMT PFLIMT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3) \text {, } \\ & (\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3) \text {, } \\ & (\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)<\mathrm{or}=(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3)<\text { or }=(\mathrm{S} 2+1, \mathrm{~S} 2),(\mathrm{S} 3+1 \text {, } \\ & \mathrm{S} 3) \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	17	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \hline \text { F348 } \\ & \text { P348 } \end{aligned}$	Floating-point type data dead-band control	FBAND PFBAND	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(\mathrm{S} 1+1, \mathrm{~S} 1)>(\mathrm{S} 3+1, \mathrm{~S} 3), \\ & (\mathrm{S} 3+1, \mathrm{~S} 3)-(\mathrm{S} 1+1, \mathrm{~S} 1) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \mathrm{When}(\mathrm{~S} 2+1, \mathrm{~S} 2)<(\mathrm{S} 3+1, \mathrm{~S} 3), \\ & (\mathrm{S} 3+1, \mathrm{~S} 3)-(\mathrm{S} 2+1, \mathrm{~S} 2) \rightarrow(\mathrm{D}+1, \mathrm{D}) \\ & \mathrm{When}(\mathrm{~S} 1+1, \mathrm{~S} 1)<o r=(\mathrm{S} 3+1, \\ & \mathrm{S} 3)<o r=(\mathrm{S} 2+1, \mathrm{~S} 2), 0.0 \rightarrow(\mathrm{D}+1, \mathrm{D}) \end{aligned}$	17	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F349 } \\ & \text { P349 } \end{aligned}$	Floating-point type data zone control	FZONE PFZONE	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { S3, D } \end{aligned}$	$\begin{aligned} & \text { When }(S 3+1, S 3)<0.0, \\ & (S 3+1, S 3)+(S 1+1, S 1) \rightarrow(D+1, D) \\ & \text { When }(S 3+1, S 3)=0.0,0.0 \rightarrow(D+1 \text {, } \\ & \text { D) } \\ & \text { When }(S 3+1, S 3)>0.0,(S 3+1 \text {, } \\ & S 3)+(S 2+1, S 2) \rightarrow(D+1, D) \end{aligned}$	17	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F350 } \\ & \text { P350 } \end{aligned}$	Floating-point type data maxi-mum value	FMAX PFMAX	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	Searches the maximum value in the real number data table between the area selected with " S 1 " and " S 2 ", and stores it in the ($\mathrm{D}+1, \mathrm{D}$). The address relative to " S 1 " is stored in (D+2).	8	\times	\times	\times	\times	\bigcirc	\bigcirc
$\begin{aligned} & \text { F351 } \\ & \text { P351 } \end{aligned}$	Floating-point type data mini-mum value	FMIN PFMIN	$\begin{aligned} & \hline \text { S1, S2, } \\ & \text { D } \end{aligned}$	Searches the minimum value in the real number data table between the area selected with " S 1 " and " S 2 ", and stores it in the ($D+1, D$). The address relative to " S 1 " is stored in (D+2).	8	\times	\times	\times	\times	\bigcirc	\bigcirc
$\begin{aligned} & \text { F352 } \\ & \text { P352 } \end{aligned}$	Floating-point type data total and mean values	FMEAN PFMEAN	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	The total value and the mean value of the real number data from the area selected with "S1" to "S2" are obtained. The total value is stored in the ($D+1, D$) and the mean value is stored in the ($\mathrm{D}+3, \mathrm{D}+2$).	8	\times	\times	\times	\times	\bigcirc	\bigcirc
$\begin{aligned} & \text { F353 } \\ & \text { P353 } \end{aligned}$	Floating-point type data sort	FSORT PFSORT	$\begin{aligned} & \text { S1, S2, } \\ & \text { S3 } \end{aligned}$	The real number data from the area specified by "S1" to "S2" are stored in ascending order (the smallest word is first) or descending order (the largest word is first).	8	\times	\times	\times	\times	O	\bigcirc
$\begin{aligned} & \text { F354 } \\ & \text { P354 } \end{aligned}$	Scaling of real number data	FSCAL PFSCAL	$\begin{aligned} & \text { S1, S2, } \\ & \text { D } \end{aligned}$	Scaling (linearization) on a real number data table is performed, and the output (Y) to an input value (X) is calculated.	12	\times	\bigcirc	$\begin{gathered} \triangle \\ { }_{* 1} \end{gathered}$	$\stackrel{\triangle}{* 2}$	$\stackrel{\triangle}{*}$	$\begin{aligned} & \triangle \\ & * 3 \end{aligned}$

: Available, X : Not available, $\triangle:$ Not available partially
*1) This instruction is available for FPE 32 k type.
*2) This instruction is available for FP-X Ver. 1.13 or later.
*3) This instruction is available for FP2/FP2SH Ver. 1.5 or later. FP10SH cannot be used.

Number	Name	Boolean	Operand	Description	$\begin{aligned} & n \\ & \stackrel{2}{\#} \\ & \stackrel{y}{\omega} \end{aligned}$		$\begin{aligned} & \text { 뜽 } \\ & \text { 문 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 나N } \end{aligned}$	준	N	
Time series processing instruction											
F355	PID processing	PID	S	PID processing is performed depending on the control value (mode and parameter) specified by (S to $\mathrm{S}+2$) and ($\mathrm{S}+4$ to $\mathrm{S}+10$), and the result is stored in the (S +3).	4	$\stackrel{\triangle}{\star 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O
F356	Easy PID	EZPID	$\begin{aligned} & \hline \text { S1, } \\ & \text { S2, } \\ & \text { S3, S4 } \end{aligned}$	Temperature control (PID) can be easily performed using the image of a temperature controller.	10	\times	\bigcirc	\triangle $* 2$	$\stackrel{\triangle}{*}$	\times	\times
Compare instructions											
$\begin{aligned} & \text { F373 } \\ & \text { P373 } \end{aligned}$	16-bit data revision detection	DTR PDTR	S, D	If the data in the 16-bit area specified by " S " has changed since the previous execution, internal relay R9009 (carry flag) will turn on. " D " is used to store the data of the previous execution.	6	\times	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { F374 } \\ & \text { P374 } \end{aligned}$	32-bit data revision detection	DDTR PDDTR	S, D	If the data in the 32-bit area specified by $(S+1, S)$ has changed since the previous execution, internal relay R9009 (carry flag) will turn on. ($\mathrm{D}+1, \mathrm{D}$) is used to store the data of the previous execution.	6	\times	\bigcirc	\bigcirc	O	\bigcirc	O
Index register bank processing instructions											
$\begin{aligned} & \text { F410 } \\ & \text { P410 } \end{aligned}$	Setting the index register bank number	SETB PSETB	n	Index register (IO to ID) bank number change over.	4	\times	\times	\times	\times	\times	\bigcirc
$\begin{aligned} & \text { F411 } \\ & \text { P411 } \end{aligned}$	Changing the index register bank number	CHGB PCHGB	n	Index register (I0 to ID) bank number change over with remembering preceding bank number.	4	\times	\times	\times	\times	\times	\bigcirc
$\begin{aligned} & \text { F412 } \\ & \text { P412 } \end{aligned}$	Restoring the index register bank number	POPB PPOPB	-	Changes index register (I0 to ID) bank number back to the bank before F411 (CHGB)/P411 (PCHGB) instruction.	2	\times	\times	\times	\times	\times	\bigcirc
File register bank processing instructions											
$\begin{aligned} & \text { F414 } \\ & \text { P414 } \end{aligned}$	Setting the file register bank number	SBFL PSBFL	n	File register bank number change over.	4	\times	\times	\times	\times	\times	$\stackrel{\triangle}{*}$
$\begin{aligned} & \text { F415 } \\ & \text { P415 } \end{aligned}$	Changing the file register bank number	CBFL PCBFL	n	File register bank number change over with remembering preceding bank number.	4	\times	\times	\times	\times	\times	$\stackrel{\triangle}{*}$
$\begin{aligned} & \text { F416 } \\ & \text { P416 } \end{aligned}$	Restoring the file register bank number	PBFL PPBFL	-	Changes file register bank number back to the bank before F415 (CBFL)/P415 (PCBFL) instruction.	2	\times	\times	\times	\times	\times	$\stackrel{\text { * }}{ }$

: Available, \times : Not available, \triangle : Not available partially
*1) This instruction is available for FPO (V2.1 or later) only.
*2) This instruction is available for FP-X V.1.20 or later, and FPE 32k type.
*3) This instruction is not available for FP10SH.

11.4 Table of Error codes

Difference in ERROR display

There are differences in the way errors are displayed depending on the model.

Model	Display		Display method
FP1,FP-M,FP2,FP3,FP10SH	LED	ERROR.	Continually lit
FP \sum, FP0, FP0R, FP-X	LED	ERROR/ALARM	Flashes/continually lit
FP-e	Screen display	ERR.	Continually lit

Error Confirmation When ERROR Turns ON

When the "ERROR" on the control unit (CPU unit) turns on or flashes, a self-diagnostic error or syntax check error has occurred. Confirm the contents of the error and take the appropriate steps.

-Error Confirmation Method

Procedure:1.Use the programming tool software to call up the error code.
By executing the "STATUS DISPLAY", the error code and content of error are displayed.
2. Check the error contents in the table of error codes using the error code ascertained above.

-Syntax check error

This is an error detected by the total check function when there is a syntax error or incorrect setting written in the program. When the mode selector is switched to the RUN mode, the total check function automatically activates and eliminates the possibility of incorrect operation from syntax errors in the program.

When a syntax check error is detected

-ERROR turns on or flashes.
-Operation will not begin even after switching to the RUN mode.
-Remote operation cannot be used to change to RUN mode.

Clearing a syntax check error

By changing to the PROG. mode, the error will clear and the ERROR will turn off.

Steps to take for syntax error

Change to the PROG. mode, and then execute the total check function while online mode with the programming tool connected. This will call up the content of error and the address where the error occurred.
Correct the program while referring to the content of error.

-Self-diagnostic Error

This error occurs when the control unit (CPU unit) self-diagnostic function detects the occurrence of an abnormality in the system. The self-diagnostic function monitors the memory abnormal detection, I/O abnormal detection, and other devices.

When a self-diagnostic error occurs

- The ERROR turns on or flashes.
- The operation of the control unit (CPU unit) might stop depending on the content of error and the system register setting.
- The error codes will be stored in the special data register DT9000(DT90000).
- In the case of operation error, the error address will be stored in the DT9017(DT90017) and DT9018(DT90018).

Clearing the self-diagnostic error

At the "STATUS DISPLAY", execute the "error clear". Error codes 43 and higher can be cleared. -You can use the initialize/test switch to clear an error. However, this will also clear the contents of operation memory.
-Errors can also be cleared by turning off and on the power while in the PROG. mode.
However, the contents of operation memory, not stored with the hold type data, will also be cleared.
-The error can also be cleared depending on the self-diagnostic error set instruction F148(ERR).

Steps to take for self-diagnostic error

The steps to be taken will differ depending on the error contents. For more details, use the error code obtained above and consult the table of self-diagnostic error codes.

MEWTOCOL-COM Transmission Errors

These are error codes from a PC or other computer device that occur during an abnormal response when communicating with a PLC using MEWTOCOL-COM.
11.4.1 Table of Syntax Check Error

Error code	Name	$\begin{aligned} & \text { Opera- } \\ & \text { tion } \\ & \text { status } \end{aligned}$	Description and steps to take	$\begin{aligned} & \text { ì } \\ & \text { ì } \end{aligned}$	욘	$\begin{aligned} & \text { 号 } \\ & \text { 呆 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 는 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 신 } \end{aligned}$	N	~	T
E1	Syntax error	Stops	A program with a syntax error has been written. \Rightarrow Change to PROG. mode and correct the error.	A	A	A	A	A	A	A	A
$\begin{gathered} \text { E2 } \\ \text { (Note) } \end{gathered}$	Duplicated output error	Stops	Two or more OT(Out) instructions and KP(Keep) instructions are programmed using the same relay. Also occurs when using the same timer/counter number. \Rightarrow Change to PROG. mode and correct the program so that one relay is not used for two or more OT instructions. Or, set the duplicated output to "enable" in system register 20. A timer/counter instruction double definition error will be detected even if double output permission has been selected.	A	A	A	A	A	A	A	A
E3	Not paired error	Stops	For instructions which must be used in a pair such as jump (JP and LBL), one instruction is either missing or in an incorrect position. \Rightarrow Change to PROG. mode and enter the two instructions which must be used in a pair in the correct positions.	A	A	A	A	A	A	A	A
E4	Parameter mismatch error	Stops	An instruction has been written which does not agree with system register settings. For example, the number setting in a program does not agree with the timer/counter range setting. \Rightarrow Change to PROG. mode, check the system register settings, and change so that the settings and the instruction agree.	A	A	A	A	A	A	A	A
$\begin{gathered} \text { E5 } \\ \text { (Note) } \end{gathered}$	Program area error	Stops	An instruction which must be written in a specific area (main program area or subprogram area) has been written to a different area (for example, a subroutine SUB to RET is placed before an ED instruction). \Rightarrow Change to PROG. mode and enter the instruction into the correct area.	A	A	A	A	A	A	A	A

Note) This error is also detected if you attempt to execute a rewrite containing a syntax error during RUN. In this case, nothing will be written to the CPU and operation will continue.

Error code	Name	Operation status	Description and steps to take	난	욘	糺	$\begin{aligned} & \text { W } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & x \\ & \text { í } \end{aligned}$	N	¢	T
E6	Compile memory full error	Stops	The program is too large to compile in the program memory. \Rightarrow Change to PROG. mode and reduce the total number of steps for the program. -FP10SH If memory expansion is possible, compilation will become possible when the memory is expanded.	A	A	A	A	A		A	A
E7	High-level instruction type error	Stops	In the program, high-level instructions, which execute in every scan and at the leading edge of the trigger, are programmed to be triggered by one contact. (e.g. FO (MV) and P0 (PMV) are programmed using the same trigger continuously.) \Rightarrow Correct the program so that the high-level instructions executed in every scan and only at the leading edge are triggered separately.			A	A	A	A	A	A
E8	High-level instruction operand combination error	Stops	There is an incorrect operand in an instruction which requires a specific combination of operands (for example, the operands must all be of a certain type). \Rightarrow Enter the correct combination of operands.	A	A	A	A	A	A	A	A
E9	No program error	Stops	Program may be damaged. \Rightarrow Try to send the program again.							A	A
E10	Rewrite during RUN syntax error	Continues	When inputting with the programming tool software, a deletion, addition or change of order of an instruction(ED, LBL, SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.						A	A	A

A: Available
11.4.2 Table of Self-Diagnostic Error

*1) This error occurs on FP-X Ver2.0 or later.
A: Available

Error code	Name	Operation status	Description and steps to take	¢	은	$\xrightarrow{\text { ¢ }}$	$\begin{aligned} & \text { W } \\ & \text { 묜 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 논 } \end{aligned}$	N	T	工
E29	Configuration parameter error	Stops	A parameter error was detected in the MEWNET-W2 configuration area. Set a correct parameter.						A	A	
E30	Interrupt error 0	Stops	Probably a hardware abnormality. \Rightarrow Please contact your dealer.								
E31	Interrupt error 1	Stops	An interrupt occurred without an interrupt request. A hardware problem or error due to noise is possible. \Rightarrow Turn off the power and check the noise conditions.	A	A	A	A	A	A	A	A
E32	Interrupt error 2	Stops	There is no interrupt program for an interrupt which occurred. \Rightarrow Check the number of the interrupt program and change it to agree with the interrupt request..	A	A	A	A	A	A	A	A
E33	Multi-CPU data unmatch error	CPU2 Stops	This error occurs when a FP3/FP10SH is used as CPU2 for a multi-CPU system. \Rightarrow Refer to "Multi-CPU system Manual".							A	A
E34	I/O status error	Stops	An abnormal unit is installed. -FP Σ, FPOR(FP0R mode),FP-X, FP2,FP2SH and FP10SH: Check the contents of special data register DT90036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one. -FP3: Check the contents of special data register DT9036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one.			A	A	A		A	A
E35	MEWNET-F slave illegal unit error	Stops	A unit, which cannot be installed on the slave station of the MEWNET-F link system, is installed on the slave station. \Rightarrow Remove the illegal unit from the slave station.						A	A	A
E36	MEWNET-F (remote I/O) limitation error	Stops	The number of slots or I/O points used for MEWNET-F(remote I/O) system exceeds the limitation. $\Rightarrow R e-c o n f i g u r e ~ t h e ~ s y s t e m ~ s o ~ t h a t ~ t h e ~$ number of slots and I/O points is within the specified range.						A	A	A
E37	MEWNET-F I/O mapping error	Stops	I/O overlap or I/O setting that is over the range is detected in the allocated I/O and MEWNET-F I/O map. $\Rightarrow \mathrm{Re}$-configure the I/O map correctly						A	A	A

A: Available

Error code	Name	Opera －tion status	Description and steps to take	$\begin{aligned} & \text { M } \\ & \text { i } \end{aligned}$	욘	$\begin{aligned} & \text { 号 } \\ & \text { 足 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 呆 } \end{aligned}$	$\begin{aligned} & x \\ & \text { 문 } \end{aligned}$	N	ㄷ	T
E38	MEWNET－F slave I／O terminal mapping error	Stops	I／O mapping for remote I／O terminal boards，remote I／O terminal units and I／O link is not correct． $\Rightarrow \mathrm{Re}$－configure the I／O map for slave stations according to the I／O points of the slave stations．						A	A	A
E39	IC card read error	Stops	When reading in the program from the IC memory card（due to automatic reading because of the dip switch setting or program switching due to F14（PGRD）instruction）： －IC memory card is not installed． －There is no program file or it is damaged． －Writing is disabled． －There is an abnormality in the AUTOEXEC．SPG file． －Program size stored on the card is larger than the capacity of the CPU． \Rightarrow Install an IC memory card that has the program properly recorded and execute the read once again．							A	A
E40	I／O error	Sele－ ctable	Abnormal I／O unit． FP Σ ，FP－X： Check the contents of special data register DT90002 and abnormal FP Σ expansion unit （application cassette for FP－X）．Then check the unit． FP2 and FP2SH： Check the contents of special data registers DT90002，DT90003 and abnormal I／O unit． Then check the unit． Selection of operation status using system register21： －to continue operation，set 1 －to stop operation，set 0 Verification is possible in FPWIN GR／Pro at ＂I／O error＂in the status display function． MEWNET－TR communication error FP3 and FP10SH： Check the contents of special data registers（FP3：DT9002，DT9003，FP10SH：DT9 0002，DT90003）and the erroneous master unit and abnormal I／O unit．Then check the unit． Selection of operation status using system register21： －to continue operation，set 1 －to stop operation，set 0 Verification is possible in FPWIN GR／Pro at ＂I／O error＂in the status display function．				A	A	A	A	A

A：Available

Error code	Name	Operation status	Description and steps to take	¢	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 민 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { o } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 산 } \end{aligned}$	N	工	T
E41	Intelligent unit error	Selectable	An abnormality in an intelligent unit. FPE, FP-X: Check the contents of special data register "DT90006" and locate the abnormal FP intelligent unit (application cassette for FP-X). FP2,FP2SH, and FP10SH: Check the contents of special data registers DT90006,DT90007 and locate the abnormal intelligent unit. Then check the unit referring to its manual.. Selection of operation status using system register22: -to continue operation, set 1 -to stop operation, set 0 FP3: Check the contents of special data registers DT9006,DT9007 and locate the abnormal intelligent unit. Then check the unit referring to its manual.. Selection of operation status using system register22: -to continue operation, set 1 -to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function.				A	A	A	A	A
E42	I/O unit verify error	Selec- table	I/O unit(Expansion unit) wiring condition has changed compared to that at time of powerup. \Rightarrow Check the contents of special data register (FP0: DT9010, FPE, FP-X: DT90010,DT90011) and locate the erroneous expansion unit. It checks whether an expansion connector is in agreement. \Rightarrow Check the contents of special data register (FP2,FP2SH, and FP10SH:DT90010,DT90011,FP3 DT9010,DT9011) Selection of operation status using system register23: -to continue operation, set 1 -to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function.		A	A	A	A	A	A	A

A: Available

Error code	Name	$\begin{aligned} & \text { Opera- } \\ & \text { tion } \\ & \text { status } \end{aligned}$	Description and steps to take	¢	은	$\begin{aligned} & \text { 증 } \\ & \text { 묜 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & x \\ & \text { 足 } \\ & \hline 1 \end{aligned}$	N	T	T C - in
E43	System watching dog timer error	Selec- table	Scan time required for program execution exceeds the setting of the system watching dog timer. \Rightarrow Check the program and modify it so that the program can execute a scan within the specified time. Selection of operation status using system register24: -to continue operation, set 1 -to stop operation, set 0							A	A
E44	Slave station connecting time error for MEWNET-F system	Selec- table	The time required for slave station connection exceeds the setting of the system register 35. Selection of operation status using system register25: -to continue operation, set 1 -to stop operation, set 0						A	A	A
E45	Operation error	Selec- table	Operation became impossible when a highlevel instruction was executed. Selection of operation status using system register26: -to continue operation, set K1 -to stop operation, set K0 The address of operation error can be confirmed in either special data registers DT9017 and DT9018, or DT90017 and DT90018. (It varies according to the model to be used.) DT9017, DT9018: FP-e, FP0, FPOR(FPO mode) DT90017, DT90018: FP \sum, FP-X, FPOR(FPOR mode), FP2, FP2SH, FP10SH Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function.	A	A	A	A	A	A	A	A

A: Available

Error code	Name	$\begin{aligned} & \text { Opera- } \\ & \text { tion } \\ & \text { status } \end{aligned}$	Description and steps to take	$\begin{aligned} & \text { M } \\ & \text { ĭ } \end{aligned}$	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 민 } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 슨 } \end{aligned}$	N	T	T W - त- L
		Selectable	S-LINK error Occurs only in FP0-SL1 When one of the S-LINK errors (ERR1, 3 or 4) has been detected, error code E46 (remote I/O (S-LINK) communication error) is stored. Selection of operation status using system register27: -to continue operation, set K1 -to stop operation, set K0		A						
E46	Remote I/O commu- nication error	Selectable	MEWNET-F communication error A communication abnormally was caused by a transmission cable or during the powerdown of a slave station. FP2, FP2SH, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the communication condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the communication condition. Selection of operation status using system register27: -to continue operation, set K1 -to stop operation, set K0						A	A	A
E47	MEW-NET- F attribute error	Selectable	In the unit on the slave station, an abnormality such as: -missing unit -abnormal intelligent unit was detected. FP2, FP2SH, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the slave condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the slave condition. Selection of operation status using system register28: -to continue operation, set 1 -to stop operation, set 0						A	A	A
E49	Expansion unit power supply sequence error	Stops	The power supply for the expansion unit was turned on after the control unit. Turn on the power supply for the expansion unit at the same time or before the control unit is turned on.					A			
E50	Backup battery error	Continues	The voltage of the backup battery lowered or the backup battery of control unit is not installed. \Rightarrow Check the installation of the backup battery and then replace battery if necessary. By setting the system register 4, you can disregard this self-diagnostic error.				A	A	A	A	A

Error code	Name	Operation status	Description and steps to take	-	은	$\begin{aligned} & \text { 뜽 } \\ & \text { 민 } \end{aligned}$	$\begin{aligned} & \text { W } \\ & \text { 만 } \end{aligned}$	$\begin{aligned} & \times \\ & \text { 는 } \end{aligned}$	~	T	ㅍ
E51	MEWNET-F terminal station error	Continues	Terminal station setting was not properly performed. Check stations at both ends of the communication path, and set them in the terminal station using the dip switches.						A	A	A
E52	MEWNET-F I/O update synchronous error	Continues	Set the INITIALIZE/TEST selecto1inmjvbgycfrde892 r to the INITIALIZE position while keeping the mode selector in the RUN position. If the same error occurs after this, please contact your dealer.						A	A	A
E53	Multi-CPU I/O registration error (CPU2 only)	Continues	Abnormality was detected when the multiCPU system was used. Please contact your dealer.								A
E54	IC memory card backup battery error	Continues	The voltage of the backup battery for the IC memory card lowered. The BATT.LED does not turn on. Charge or replace the backup battery of IC memory card.(The contents of the IC memory card cannot be guaranteed.)							A	A
E55	IC memory card backup battery error	Cont- inues	The voltage of the backup battery for IC memory card lowers. The BATT.LED does not turn on. Charge or replace the backup battery of IC memory card. (The contents of the IC memory card cannot be guaranteed.)							A	A
E56	Incompatible IC memory card error	Cont- inues	The IC memory card installed is not compatible. Replace the IC memory card compatible with FP2SH/FP10SH.							A	A
E57	No unit for the configuration	Continues	MEWNET-W2/MCU The MEWNET-W2 link unit or MCU(Multi communication unit) is not installed in the slot specified using the configuration data. Either install a unit in the specified slot or change the parameter.						A	A	
$\begin{aligned} & \text { E100 } \\ & \text { to } \\ & \text { E199 } \end{aligned}$	Selfdiagnostic error set	Stop	The error specified by the F148 (ERR)/P148(PERR) instruction is occurred. \Rightarrow Take steps to clear the error condition according to the specification you chose.	A	A	A	A	A	A		
$\begin{aligned} & \text { E200 } \\ & \text { to } \\ & \text { E299 } \end{aligned}$	by F148 (ERR)/P148 (PERR) instruction	Continues		A	A	A	A	A	A		

A :Available

11.4.3 Table of MEWTOCOL-COM Communication Error

Error code		
Name		
$!21$	NACK error	Link system error
$!22$	WACK error	Link system error
$!23$	Unit No. overlap	Link system error
$!24$	Transmission format error	Link system error
$!25$	Link unit hardware error	Link system error
$!26$	Unit No. setting error	Link system error
$!27$	No support error	Link system error
$!28$	No response error	Link system error
$!29$	Buffer closed error	Link system error
$!30$	Time-out error	Link system error
$!32$	Transmission impossible error	Link system error
$!33$	Communication stop	Link system error
$!36$	No destination error	Link system error
$!38$	Other communication error	Link system error
$!40$	BCC error	A transfer error occurred in the received data.
$!41$	Format error	A command was received that does not fit the format.
$!42$	No support error	A command was received that is not supported.
$!43$	Multiple frames procedure error	A different command was received when processing multiple frames.
$!50$	Link setting error	A route number that does not exist was specified. Verify the route number by designating the transmission station.
$!51$	Transmission time-out error	Transmission to another device not possible because transmission buffer is congested.
$!52$	Transmit disable error	Transmission processing to another device is not possible.(Link unit runaway, etc.)
$!53$	Busy error	Command process cannot be received because of multiple frame processing. Or, cannot be received because command being processed is congested.
$!60$	Parameter error	Content of specified parameter does not exist or cannot be used.
$!61$	Data error	There was a mistake in the contact, data area, data number designation, size designation, range, or format designation.
$!62$	Registration over error	Operation was does when number of registrations was exceeded or when there was no registration.
$!63$	PC mode error	PC command that cannot be processed was executed during RUN mode.

Error code	Name	Description
!64	External memory error	An abnormality occurred when loading RAM to ROM/IC memory card. There may be a problem with the ROM or IC memory card. -When loading, the specified contents exceeded the capacity. -Write error occurs. -ROM or IC memory card is not installed. -ROM or IC memory card does not conform to specifications -ROM or IC memory card board is not installed.
!65	Protect error	A program or system register write operation was executed when the protect mode (password setting or DIP switch, etc.) or ROM operation mode was being used.
!66	Address error	There was an error in the code format of the address data. Also. when exceeded or insufficient of address data, there was a mistake in the range designation.
$!67$	No program error and No data error	Cannot be read because there is no program in the program area or the memory contains an error. Or, reading was attempted of data that was not registered.
!68	Rewrite during RUN error	When inputting with programming tool software, editing of an instruction (ED, SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.
$!70$	SIM over error	Program area was exceeded during a program write process.
!71	Exclusive access control error	A command that cannot be processed was executed at the same time as a command being processed.

11.5 MEWTOCOL-COM Communication Commands

Table of MEWTOCOL-COM commands

Command name	Code	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads the on and off status of contact. - Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns contacts on and off. - Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter elapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using the code "MC or MD".
Preset contact area (fill command)	SC	Embeds the area of a specified range in a 16- point on and off pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable controller and error codes if an error occurs.
Remote control	RM	Switches the operation mode of the programmable controller.
Abort	AB	Aborts communication.

11.6 Hexadecimal/Binary/BCD

Decimal	Hexadecimal	Binary data	BCD data (Binary Coded Decimal)
0	0000	0000000000000000	0000000000000000
1	0001	0000000000000001	0000000000000001
2	0002	0000000000000010	0000000000000010
3	0003	0000000000000011	0000000000000011
4	0004	0000000000000100	0000000000000100
5	0005	0000000000000101	0000000000000101
6	0006	0000000000000110	0000000000000110
7	0007	0000000000000111	0000000000000111
8	0008	0000000000001000	0000000000001000
9	0009	0000000000001001	0000000000001001
10	000A	0000000000001010	0000000000010000
11	000B	0000000000001011	0000000000010001
12	000C	0000000000001100	0000000000010010
13	000D	0000000000001101	0000000000010011
14	000E	0000000000001110	0000000000010100
15	000F	0000000000001111	0000000000010101
16	0010	0000000000010000	0000000000010110
17	0011	0000000000010001	0000000000010111
18	0012	0000000000010010	0000000000011000
19	0013	0000000000010011	0000000000011001
20	0014	0000000000010100	0000000000100000
21	0015	0000000000010101	0000000000100001
22	0016	0000000000010110	0000000000100010
23	0017	0000000000010111	0000000000100011
24	0018	0000000000011000	0000000000100100
25	0019	0000000000011001	0000000000100101
26	001A	0000000000011010	0000000000100110
27	001B	0000000000011011	0000000000100111
28	001C	0000000000011100	0000000000101000
29	001D	0000000000011101	0000000000101001
30	001E	0000000000011110	0000000000110000
31	001F	0000000000011111	0000000000110001
-	.	.	
-	.		
63	003F	0000000000111111	0000000001100011
.	.		.
-	\cdot		
255	00FF	0000000011111111	0000001001010101
.	.	.	
-	.		.
9999	270F	0010011100001111	1001100110011001

11.7 ASCII Codes

Index

A

Alarm function, 4-36
ALARM LED, 8 - 7
Alarm output, 4-37
Arbitrary allocation, 3-3, 3-7
ASCII codes, 10-97
Automatic allocation, 3-3, 3-15

B

Backplane, 1-5, 2-3, 2-4, 2-5, 2-6, 4-6
Backup battery, 4-13, 9 - 3
Baud rate, 5-5
BCD, 11-96
Before entering a program, ix
Before turning on the power, ix, 5-3
Binary, 11-96

C

Check items, 5-3
Clearing registered content, 3-17
COM port (RS232C), 2 - 11
Comment function, 6-16
Communication error message, 8 - 9
Communications specifications, 2 - 11
Computer link, 1-15
Connecting the terminals, 4-27
Connecting with flat cable connector, 4-32
Connection of capacitive loads, 4-22
Connection of inductive loads, 4-21
Connection of LED-equipped limit switch, 4-20

Connection of LED-equipped reed switch, 4-19

Connection of sensors, 4-18
Connection of two-wire type sensor,
4-19
Connector, 4-24
Connector for wire-pressed terminal cable, 4-25

Constants, 10-12
CPU backplane, 1-4
CPU with 64 points input (FP2-C1D), 2-12

CPU with IC memory card interface (FP2-C2P/FP2-C3P), 2 - 20
CT-2 connector terminal, 4-27
Current consumption, 1-13
D
Dimensions, 4-3, 10-3
DIN rail, 4-7
Dust proofing label, 4-8, 4-22

E

Eliminating effects from noise, 4-16
Emergency stop circuit, 4-36
EPROM, 6-8, 6-10
Erasing, 7-6
Erasing the IC memory card, 7-11
ERROR LED, 8 - 5
Expanded memory field, 7 - 6
Expansion cable, 1-7, 2-7, 4-11
Expansion memory, 7-22
Expansion memory unit, 2-15, 2 - 22

F

Formatting, 7 - 6
Formatting the IC memory card, 7 - 8
FP2 CPU, 2 - 8
FP2 operation, 6-3
FP2 RAM operation, 6 - 5
FP2 ROM operation, 6-6
FP2SH CPU, 2 - 18
FP2SH operation, 6-13
FP2SH RAM operation, 6-17
FP2SH ROM operation, 6-19
Free slots, 3-18
FROM, 6-10, 7 - 3

G

General specifications, 10-3
Grounding, 4-17, 4-36

H

Hexadecimal, 11-96

I/O allocation methods, 3 - 3
I/O mixed unit, 2 - 32
I/O mixed units specifications, 2 - 55
I/O mount allocation, 3-3, 3-13
IC memory card, 2-23, 7-3, 7-8
IC memory card operation, 6-13, 6-29
Initialize/test switch, 2 - 9
Input and output units, 2 - 30
Input unit, 2-31
Input units specifications, 2-33
Input wiring, 4-18
Installation, 4-3

Installation location, 4-4
Interlock circuit, 4-36
Internal circuit diagram, 2-14, 2-33,
$2-35,2-38,2-39,2-42,2-44$,
$2-46,2-48,2-50,2-52,2-54$,
$2-57,2-60,2-63,2-66$

L

Lifetime of backup battery, 9 - 3
Limitations on current consumption, 1-12

M

Memory areas, 10-10
Menus related to tool software, 7-25
Mode selector, 2 - 10
MODEM, 1-17
Momentary power failures, 4-37
Mounting hole dimensions, 4-6
Mounting method, 4-6

0

Occupied I/O points, 3 - 5
On pulse catch input function, 2-67
Operating environment, viii
Operation condition switches, 2 - 10,
2-21
Output unit, 2 - 31
Output units specifications, $2-39$
Output wiring, 4-21

P

Password, 8 - 10
Performance specifications, $10-5,10-8$

Pin layout, $2-14,2-34,2-36,2-38$,
2-40, 2 - 42, 2-44, 2-46, 2 - 48,
$2-50,2-52,2-54,2-57,2-60$,
2-63, 2-66
Power outages, 6-4
Power supply sequence, ix
Power supply system, 4-16
Power supply unit, 2 - 28
Power supply voltage, 4-15
Pressure connection terminal, 4-15
Preventive maintenance, 9-8
Program memory, 7-13
Program memory field, 7-6
Programming tool, 1 -19, 4-5
Programming tool software, 5-5,5-6
Protect error message, 8 - 10

R

RAM operation, 6-3, 6-5, 6-13
Reading the program, 7-18
Relays, 10-10
Removable terminal block, 9-7
Restrictions on unit types, 1-10
ROM, 1-21, 2-15, 2 - 22
ROM operation, 6-3, 6-13
RT-2 relay terminal, 4-31

S

Safety measures, 4-36
Self-diagnostic function, 8-3
Setting the alarm battery error, 6-14
Setting the battery error warnings, 6-4
6-point type relay output unit, 2-41
16-point type DC input unit, $2-33$
16-point type relay output unit, 2-39

16-point type transistor (NPN) output unit, 2-43

16-point type transistor (PNP) output unit, 2-45
60k step standard type CPU (FP2-C2), 2-19

64-point type DC input unit, 2-37
64-point type transistor (NPN) output unit, 2-51

64-point type transistor (PNP) output unit, 2-53
Spare parts, 9 - 3
Specifications, 10-3
SRAM, 7 - 3
Standard type CPU (FP2-C1), 2-8
Start up sequence, 4-36
Static electricity, viii
Status indicator LEDs, 2-9, 8-3
System configuration, 1 - 3

T

Terminal, 4-24
Terminal block, 4-34
32k step standard type CPU (FP2-C2L), 2-19
32-point type transistor (PNP) output unit, 2-49

32-point type DC input unit, 2 - 35
32-point type DC input with on pulse catch input function/32-point type transistor output (NPN) unit, 2-61

32-point type DC input with on pulse catch input function/32-point type transistor output (PNP) unit, 2-64
32-point type DC input/32-point type transistor (NPN) output unit, 2 - 55
32-point type DC input/32-point type transistor (PNP) output unit, 2-58

32-point type transistor (NPN) output unit, 2-47

Troubleshooting, 8 - 5
2-module type, 1-4
W
Watchdog timer, 4-37
Weight, 10-4
Wiring the connector type units, 4-23
Wiring the terminal block type units, 4-34
Writing the program, $7-13$
Writing to ROM, 6-8

Record of changes

Manual No.	Date	Desceiption of changes
ARCT1F320E ACG-M320E	Jul. 2000	First edition
ARCT1F320E-1 ACG-M320E-1	Jul. 2003	$2^{\text {nd }}$ edition
ARCT1F320E-2 ACG-M320E-2	May. 2004	$3^{\text {rd }}$ edition
ARCT1F320E-3 ACG-M320E-3	Feb. 2005	$4^{\text {th }}$ edition
ARCT1F320E-4 ACG-M320E-4	Sep. 2006	$5^{\text {th }}$ edition
ARCT1F320E-5 ACG-M320E-5	Mar. 2007	$6^{\text {th }}$ edition
ARCT1F320E-6 ACG-M320E-6	Apr. 2008	$7^{\text {th }}$ edition
ARCT1F320E-7 ACG-M320E-7	Oct. 2008	$8^{\text {th }}$ edition
$\begin{aligned} & \text { ARCT1F320E-8 } \\ & \text { ACG-M320E-8 } \end{aligned}$	Feb. 2009	$9^{\text {th }}$ edition
ARCT1F320E-9 ACG-M320E-9	Mar. 2009	$10^{\text {th }}$ edition
ARCT1F320E-10 ACG-M320E-10	Jan. 2010	$11^{\text {th }}$ edition
ARCT1F320E-11 ACG-M320E-11	Apr. 2011	$12^{\text {th }}$ edition
ARCT1F320E-12 ACG-M320E-12	Sep. 2012	$13^{\text {th }}$ edition

[^0]: Check the manuals for specifications and other items pertaining to usage. FP series Programming Manual

[^1]: Note
 The color of letters on the printed board is yellow to make easier to distinguish the FP2 backplane H type from the FP2 backplane.

[^2]: 8-8

[^3]: : Available, X : Not available, \triangle : Not available partially

[^4]: \bigcirc : Available, X : Not available, \triangle : Not available partially

