Panasonic

PROGRAMMABLE CONTROLLER FP2/FP2SH User's Manual

ARCT1F320E-12

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Safety Precautions

Observe the following notices to ensure personal safety or to prevent accidents. To ensure that you use this product correctly, read this User's Manual thoroughly before use. Make sure that you fully understand the product and information on safety. This manual uses two safety flags to indicate different levels of danger.

WARNING

If critical situations that could lead to user's death or serious injury is assumed by mishandling of the product.

-Always take precautions to ensure the overall safety of your system, so that the whole system remains safe in the event of failure of this product or other external factor.

-Do not use this product in areas with inflammable gas. It could lead to an explosion. -Exposing this product to excessive heat or open flames could cause damage to the lithium battery or other electronic parts.

-Battery may explode if mistreated. Do not recharge, disassemble or dispose of fire.

CAUTION

If critical situations that could lead to user's injury or only property damage is assumed by mishandling of the product.

-To prevent excessive exothermic heat or smoke generation, use this product at the values less than the maximum of the characteristics and performance that are assured in these specifications.

-Do not dismantle or remodel the product. It could cause excessive exothermic heat or smoke generation.

-Do not touch the terminal while turning on electricity. It could lead to an electric shock.

-Use the external devices to function the emergency stop and interlock circuit.

-Connect the wires or connectors securely.

The loose connection could cause excessive exothermic heat or smoke generation.

-Ground the protective earth (PE) terminal (Class D grounding). Failure to do so could lead to an electric shock.

-Do not allow foreign matters such as liquid, flammable materials, metals to go into the inside of the product. It could cause excessive exothermic heat or smoke generation.

-Do not undertake construction (such as connection and disconnection) while the power supply is on. It could lead to an electric shock.

Copyright / Trademarks

-This manual and its contents are copyrighted.

-You may not copy this manual, in whole or part, without written consent of Panasonic Industrial Devices SUNX Co., Ltd.

-Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

-All other company names and product names are trademarks or registered trademarks of their respective owners.

PLC_BATPE

i

Table of Contents

Before You Startviii
Special Precautionsx
Compatibility with CPU Unit, and Precautions
Compatibility of FP2SH and FP2, and Precautions xiv
IC memory cards for the FP2SHxv
Compatibility of FP2/FP2SH and FP10SH, and Precautions . xvi
Programming Tool Restrictions xvii

Chapter 1 Overview

1.1	System	Configuration	. 1 – 3
	1.1.1	Basic Configuration by Number of Slots	. 1 – 3
	1.1.2	Expansion of Backplane	. 1 – 5
1.2	Unit Typ	bes and Combinations	. 1 – 8
	1.2.1	Line-Up of Backplanes and Units	
	1.2.2	Combinations That Can be Used and Restrictions	1 – 10
		1.2.2.1 Restrictions on Unit Types	1 – 10
		1.2.2.2 Limitations on Current Consumption	1 – 12
1.3	Expansi	ion Function	1 – 15
	1.3.1	Computer Link	1 – 15
	1.3.2	Connection of MODEM	
1.4	Progran	nming Tools	1 – 19
	1.4.1	Tools Needed for Programming	
	1.4.2	Software Environment and Suitable Cable	1 – 20
	1.4.3	Tools Needed for ROM Creating	1 – 21

Chapter 2 Parts and Functions

2.1	Backpla	ne and Expansion Cable
	2.1.1	Backplane
	2.1.2	Basic Backplane H Type (FP2–BP**MH) 2 – 5
	2.1.3	Expansion Backplane H Type (FP2–BP**EH)
	2.1.4	Expansion Cable
2.2	FP2 CP	U
	2.2.1	Standard Type CPU (FP2-C1)
	2.2.2	CPU with 64 Points Input (FP2–C1D) 2 – 12

2.3	Expansion Memory Unit and ROM (for FP2 CPU) 2 -		
2.4	FP2SH 2.4.1 2.4.2	CPU	2 – 19
2.5	Expansi	on Memory Unit and ROM (for FP2-C2L/FP2-C2)	2 – 22
2.6	IC Mem	ory Card (for FP2-C2P/FP2-C3P)	2 – 23
2.7	Power S 2.7.1	Supply Units	
2.8	Input an 2.8.1	d Output Units	
2.9	Input Ur 2.9.1 2.9.2 2.9.3	nits Specifications 16-point Type DC Input Unit 32-point Type DC Input Unit 64-point Type DC Input Unit	2 – 33 2 – 35
2.10	Output 0 2.10.1 2.10.2 2.10.3 2.10.4 2.10.5 2.10.6 2.10.7 2.10.8	Jnits Specifications16-point Type Relay Output Unit6-point Type Relay Output Unit16-point Type Transistor (NPN) Output Unit16-point Type Transistor (PNP) Output Unit32-point Type Transistor (NPN) Output Unit32-point Type Transistor (PNP) Output Unit64-point Type Transistor (NPN) Output Unit64-point Type Transistor (PNP) Output Unit	$\begin{array}{r} 2 & - & 39 \\ 2 & - & 41 \\ 2 & - & 43 \\ 2 & - & 45 \\ 2 & - & 47 \\ 2 & - & 49 \\ 2 & - & 51 \end{array}$
2.11	I/O Mixe 2.11.1	ed Units Specifications	
	2.11.2	32-point Type DC Input/32-point Type Transistor (PNP) Output Unit	
	2.11.3	32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (NPN) Unit	2 – 61
	2.11.4	32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (PNP) Unit	
	2.11.5	On Pulse Catch Input Function	2 - 67

Chapter 3 I/O Allocation

3.1	Fundam	entals of I/	O Allocation	3 – 3
	3.1.1	I/O Allocat	tion and Registering	3 – 3
		3.1.1.1	Types of I/O Allocation Methods	3 – 3
		3.1.1.2	Precautions Regarding Registering of I/O Allocation . 3	3 – 3
		3.1.1.3	How to Count the I/O Numbers and Express the Occupied Points	3 – 4
	3.1.2	Table of O	ccupied I/O Points by Unit	3 – 5
3.2	,		itrary Allocation	

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

3.2.2	Allocation I	Example of CPU Backplane	3 – 7
3.2.3	Allocation I	Example of Expansion Backplane	3 – 10
	3.2.3.1	When Using FP2 Backplane	3 – 10
	3.2.3.2	When Using FP2 Backplane H Type	. 3 – 11
I/O Mou	nt Allocatior	۱	3 – 13
3.3.1	Using I/O M	Nount Allocation	3 – 13
	3.3.1.1	Example of I/O Mount Allocation	3 – 13
	3.3.1.2	Procedure for I/O Mount Allocation	3 – 14
Automat	tic Allocation	η	3 – 15
3.4.1	Using Auto	matic Allocation	3 – 15
	3.4.1.1	Example of Automatic Allocation	3 – 15
	3.4.1.2	Procedure for Automatic Allocation	3 – 16
Procedu	ire for Clear	ing Registered Content	3 – 17
3.5.1	Meaning of	f Clearing Registered Content	3 – 17
3.5.2	Clearing C	ontent Using Programming Tool Software	3 – 17
I/O Num	bers of Fre	e Slots	3 – 18
3.6.1	I/O Numbe	rs of Free Slots	3 – 18
3.6.2	Differences		
	3.6.2.1	When Arbitrary Allocation is Used	3 – 18
	3.6.2.2	When I/O Mount Allocation is Used	3 – 20
	3.6.2.3	When Automatic Allocation is Used	3 – 21
	3.2.3 I/O Mou 3.3.1 Automat 3.4.1 Procedu 3.5.1 3.5.2 I/O Num 3.6.1	 3.2.3 Allocation I 3.2.3.1 3.2.3.2 I/O Mount Allocation 3.3.1 Using I/O M 3.3.1.1 3.3.1.2 Automatic Allocation 3.4.1 Using Auto 3.4.1.1 3.4.1.2 Procedure for Clear 3.5.1 Meaning of 3.5.2 Clearing C I/O Numbers of Free 3.6.1 I/O Number 3.6.2.1 3.6.2.1 3.6.2.2 	 3.2.3 Allocation Example of Expansion Backplane 3.2.3.1 When Using FP2 Backplane 3.2.3.2 When Using FP2 Backplane H Type I/O Mount Allocation 3.3.1 Using I/O Mount Allocation 3.3.1.1 Example of I/O Mount Allocation 3.3.1.2 Procedure for I/O Mount Allocation Automatic Allocation 3.4.1 Using Automatic Allocation 3.4.1.1 Example of Automatic Allocation 3.4.1.2 Procedure for Automatic Allocation 3.5.1 Meaning of Clearing Registered Content 3.5.2 Clearing Content Using Programming Tool Software I/O Numbers of Free Slots 3.6.1 I/O Numbers of Free Slots 3.6.2 Differences Due to Allocation Methods 3.6.2.1 When Arbitrary Allocation is Used 3.6.2.2 When I/O Mount Allocation is Used

Chapter 4 Installation and Wiring

4.1	Installat	ion	. 4 – 3
	4.1.1	Installation Space and Environment	. 4 – 3
	4.1.2	Mounting Method	. 4 – 6
		4.1.2.1 Backplane	. 4 – 6
		4.1.2.2 Units	. 4 – 8
	4.1.3	Connecting Expansion Cable	4 – 11
	4.1.4	Preparing the Backup Battery	4 – 13
4.2	Power S	Supply Wiring	4 – 15
	4.2.1	Wiring of Power Supply	
	4.2.2	Grounding	4 – 17
4.3	Wiring I	nput and Output	4 – 18
	4.3.1	Input Wiring	4 – 18
	4.3.2	Output Wiring	4 – 21
	4.3.3	Cautions Regarding Units	4 – 22
4.4	Wiring t	he Connector Type I/O Units	4 – 23
	4.4.1	Wiring the Connector Type Units	
	4.4.2	Connecting with Connector for Wire-pressed Terminal Cable	4 – 25
	4.4.3	Connecting the Terminals	4 – 27
	4.4.4	Connecting with Flat Cable Connector	4 – 32
4.5	Wiring t	he Terminal Block Type I/O Units	4 – 34

	4.5.1	Wiring the Terminal Block Type Units	4 – 34
4.6	Safety N	leasures	4 – 36
	4.6.1	Safety Instructions	4 – 36
	4.6.2	Momentary Power Failures	4 – 37
	4.6.3	Alarm Output	4 – 37

Chapter 5 Procedure Until Operation

Before 7	urning ON the Power
5.1.1	Check Items
5.1.2	Procedure Up To Operation5 – 4
Program	ming with Programming Tool Software
5.2.1	Preparations
5.2.2	Configuration of Programming Tool Software
	5.2.2.1 Parameters and Setting Methods
	5.1.1 5.1.2 Program 5.2.1 5.2.2

Chapter 6 FP2/FP2SH Operation

6.1	FP2 Op	eration		6 – 3
	6.1.1	FP2 RAM	and ROM Operations	6 – 3
		6.1.1.1	Comparison of RAM and ROM Operations	6 – 3
		6.1.1.2	Retaining the Data During Power Outages	6 – 4
		6.1.1.3	Setting the Battery Error Warnings	6 – 4
6.2	FP2 RA	M Operatio	n	6 – 5
	6.2.1	RAM Oper	ation Method	6 – 5
	6.2.2	Precaution	s When Operating the RAM	6 – 5
6.3	FP2 RC	M Operatio	n	6 – 6
	6.3.1	ROM Oper	ration Method	6 – 6
	6.3.2	Verifying th	ne ROM Contents in RAM Operation	6 – 7
6.4	Writing	to ROM		6 – 8
	6.4.1	Writing to I	EPROM Using Programming Tool Software	6 – 8
	6.4.2	Writing to I	EPROM via FROM	6 – 10
6.5	FP2SH	Operation		6 – 13
	6.5.1	Compariso	on of RAM, ROM, and IC Memory Card Operation	6 – 13
	6.5.2	Retaining I	Data If the Power Fails	6 – 14
	6.5.3	Comment	Function	6 – 16
6.6	FP2SH	RAM Opera	ation	6 – 17
	6.6.1	RAM Oper	ation Method	6 – 17
	6.6.2	Precaution	s When Operating the RAM	6 – 18
6.7	FP2SH	ROM Opera	ation	6 – 19

	6.7.1	ROM Operation Function	6 – 19
	6.7.2	ROM Operation Method	6 – 20
	6.7.3	Precautions When Operating the ROM	6 – 21
	6.7.4	Checking the ROM Contents While Using RAM Operation	6 – 22
	6.7.5	Sending Data from the RAM to the FROM	6 – 23
	6.7.6	Writing Data to the ROM (AFP5209) (only the FP2–C2 can be installed)	6 – 25
	6.7.7	Writing Data to the ROM: Using the FPWIN GR	6 – 27
6.8	FP2SH	C Memory Card Operation (for FP2-C2P/FP2-C3P)	6 – 29
	6.8.1	Operating Using the IC Memory Card	6 – 29
	6.8.2	Creating Files for Automatically Run Programs	6 – 31
	6.8.3	How the IC Memory Card is Operated	6 - 32
	6.8.4	Transferring Data From the RAM to the IC Memory Card	6 - 33

Chapter 7 IC Memory Card

7.1	Using th	e IC Memory Card
	7.1.1	Types of IC Memory Cards
	7.1.2	Using the IC Memory Card 7 – 4
7.2	Formatti	ing and Erasing
	7.2.1	Program Memory Field and Expanded Memory Field7 - 6
	7.2.2	Procedure for Formatting the IC Memory Card7 – 8
	7.2.3	Procedure for Erasing the IC Memory Card
	7.2.4	Data Storage Capacity of IC Memory Card 7 – 12
7.3	For Use	as Program Memory
	7.3.1	Writing the Program
	7.3.2	Reading the Program 7 – 18
7.4	For Use	as Expansion Memory 7 – 22
7.5	Menus F	Related to Tool Software 7 – 25

Chapter 8 Self-Diagnostic Function and Troubleshooting

Self-Dia	gnostic Function	3
8.1.1	LED Display for Status Condition	3
8.1.2	Operation When an Error Occurs	4
Troubles	shooting	5
8.2.1	If the ERROR LED Lights	5
8.2.2	If the ALARM LED Lights8 –	7
8.2.3	If the LED (POWER) of the Power Supply Unit Does Not Light 8 -	7
	8.1.1 8.1.2 Troubles 8.2.1 8.2.2	Self-Diagnostic Function 8 - 3 8.1.1 LED Display for Status Condition 8 - 3 8.1.2 Operation When an Error Occurs 8 - 4 Troubleshooting 8 - 4 8.2.1 If the ERROR LED Lights 8 - 4 8.2.2 If the ALARM LED Lights 8 - 4 8.2.3 If the LED (POWER) of the Power Supply Unit Does Not Light 8 - 4

8.2.4	If Outputting Does Not Occur as Desired	8 – 8
8.2.5	If a Communication Error Message Appears	8 – 9
8.2.6	If a Protect Error Message Appears	8 – 10

Chapter 9 Maintenance

9.1	Replac	ement of Spare Parts
	9.1.1	Backup Battery
	9.1.2	Removable Terminal Block for Input and Output Units
9.2	Prever	tive Maintenance9 - 8

Chapter 10 Specifications

10.1	Specific	ations	. 10 – 3
10.2	Relays,	Memory Areas and Constants	10 – 10
10.3	Cable/A	dapter Specifications	10 – 13
	10.3.1	AFC8503/AFC8503S	10 – 13
	10.3.2	AFC85305/AFC8531/AFC8532	
		(For extending for the tool port)	10 – 13

Chapter 11 Appendix

11 11.2 Ta 11.3 Ta 11.4 Ta 11 11	1.3 Special Data Registers for FP2/FP2SH/FP10SH/FP3 11 - 29 ble of Basic Instructions 11 - 54 ble of High-level Instructions 11 - 62 ble of Error codes 11 - 82 4.1 Table of Syntax Check Error 11 - 84 4.2 Table of Self-Diagnostic Error 11 - 86 4.3 Table of MEWTOCOL-COM Communication Error 11 - 93
11 11.2 Ta 11.3 Ta 11.4 Ta 11	ble of Basic Instructions 11 – 54 ble of High–level Instructions 11 – 62 ble of Error codes 11 – 82 4.1 Table of Syntax Check Error 11 – 84
11 11.2 Ta 11.3 Ta	ble of Basic Instructions
11	
	 stem Registers/Special Internal Relays/Special Data Registers 11 - 2 1.1 Table of System Registers for FP2/FP2SH/FP10SH 11 - 4 1.2 Table of Special Internal Relays for FP2/FP2SH/FP10SH 11 - 18

Before You Start

Operating environment

(Use the unit within the range of the general specifications when installing)

- Ambient temperatures:0 to +55 °C
- Ambient humidity: 30% to 85% RH (at 25 °C, non-condensing)
- For use in pollution Degree 2 environment.
- Do not use it in the following environments.
 - Direct sunlight
 - Sudden temperature changes causing condensation.
 - Inflammable or corrosive gas.
 - Excessive airborne dust, metal particles or saline matter.
 - Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
 - Direct vibration, shock or direct drop of water.
 - Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters,or any other equipment that would generate high switching surges. (100mm or more)

About static electricity

- Do not touch connector pins directly to prevent static electricity from causing damage.
- Always rid yourself of any static electricity before handling this product.

Wiring the Power Supply to the Control Unit

- Use a power supply wire that is thicker than 2 mm² (AWG14), and twist it.
- The unit has sufficient noise immunity against the noise generated on the power line.
 However, it is recommended to take measures for reducing noise such as using a isolating transformer before supplying the power.
- Allocate an independent wiring for each power supplying line, input/output device and operating device.
 If using a power supply without a protective circuit, power should be supplied through a protective element such as a fuse.
- Use the same power supply system for the CPU backplane and expansion backplane so that they are turned on and off simultaneously.

Power supply sequence

 In order to protect the power supply sequence, make sure to turn off the PLC before the input/output power supply. If the input/output power supply is turned off before the PLC, or if the PLC is not shut off momentarily, the controller detects change of input level, and might conduct an unexpected operation.

Before Turning On the Power (- Chapter 4 and Chapter 5)

When turning on the power for the first time, be sure to take the precautions given below.

- When performing installation, check to make sure that there are no scraps of wiring, particularly conductive fragments, adhering to the unit.
- Verify that the power supply wiring, I/O wiring, and power supply voltage are all correct.
- Sufficiently tighten the installation screws and terminal screws.
- Set the mode selector to PROG. mode.

Before Entering a Program (- Chapter 5)

Be sure to perform a program clear operation before entering a program.

When using FPWIN GR software

Procedure:

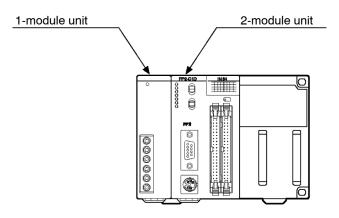
- 1. Execute "FPWIN GR".
- 2. ON the "Online" menu, select "Online Edit Mode".
- 3. ON the "Edit" menu, select "Clear Program".

Battery

Do not install the battery when it is not used.

There is a possibility of leak if the battery remains discharged.

Special Precautions


With the FP2

The FP2 uses the term "module" when express the size of the unit or backplane.

The unit installation sizes come in two sizes: the basic 1-module size, and the 2-module size that is twice as wide.

The 1-module unit is the size that physically takes up the space of one guide on the backplane.

The 2-module unit is the size that physically takes up the space of two guides on the backplane.

Backplane Selection

Following two kinds of backplanes are available.

1) FP2 backplane (AFP25***) (Color of letters on the printed board: White)

2) FP2 backplane H type (AFP25****H) (Color of letters on the printed board: Yellow) These two backplanes cannot be used in combination.

Carefully select the type of backplanes before you order.

The selection of the backplane should be based on the total number of modules to be used in the system. In other words, the module number of the backplane must be greater than or equal to the total number of modules for the system. So be sure to select a backplane that allows the installation of all the required units.

When using the FP3, FP10SH, or Other Units

Backplane slot number

The backplane for the FP2 is specified by the total number of slots, i.e., 14-module type, including the connectors for the power supply unit and CPU. The number of connectors (or slots) remaining for the I/O units and intelligent units is then the module number of the backplane minus the number of modules for the power supply unit and CPU. Similarly, the number of connectors (or slots) remaining for the I/O units on expansion backplanes is the module number of the backplane minus the number of modules for the power supply unit.

Expansion backplanes

- 1. FP2 backplane
- Does not support expansion with 5-module type backplanes.
- Backplanes that are not the 5-module type can be used as expansion backplanes.
- 2. FP2 backplane H type
- This backplane is functionally equivalent to the backplane for FP3.
- There are the basic backplane H type for installing I/O units and the expansion backplane H type for adding I/O units more.
- The basic backplane cannot be used as an expansion backplane.

Removal and Installation of Expansion Memory Unit

During removal and installation of expansion memory unit, the contents of the internal RAM may be erased, so be sure to save a copy of the program and data onto a disk before beginning the operations.

Use programming tool software (NPST-GR/FPWIN GR) for backup purposes.

Before rewriting the backed up program and data to the programmable controller, be sure to clear the program in the programmable controller.

With the FP2SH

Programming Tool Restrictions

The following tool software is required in order to program the FP2SH. "FPWIN GR" "NPST-GR" Ver. 4.6 or a subsequent version

Request Concerning Program Storage

To prevent the accidental loss of programs, the user should consider the following measures.

Drafting of documents

To avoid accidentally losing programs, destroying files, or overwriting the contents of a file, documents should be printed out and then saved. Disks should be organized to assure safe maintenance.

Specifying the password carefully

The password setting is designed to avoid programs being accidentally overwritten. If the password is forgotten, however, it will be impossible to overwrite the program even if you want to. Also, if a password is forcibly bypassed, the program is deleted. When specifying the password, note it in the specifications manual or in another safe location in case it is forgotten at some point.

Saving programs to the ROM

In order to prevent programs from being lost if the backup battery runs down, and to prevent accidental overwriting of programs in the workplace, we recommend saving programs entered in the RAM to the ROM. If the PLC is used over a long period of time, this concern applies particularly to programs that are built into the device when shipped.

Check the manuals for specifications and other items pertaining to usage.

FP series Programming Manual

Compatibility with CPU unit, and Precautions

Comparison of Specifications

Items		FP2 CPU	FP2SH CPU	PU FP10SH CPU			
			FP2-C1, FP2-C1D, FP2-C1A,FP2-C1SL	FP2-C2L, FP2-C2, FP2-C2P,FP2-C3P	AFP 6221V3	AFP 6211V3	
Controllable I/O Basic construction points		Basic construction	Using Backplanes: Max. 768 points (12 modules) Using Backplanes H type: Max. 512 points (8 modules)				
		Expanded construction	Using Backplanes: Max. 1,600 points (25 modules) Using Backplanes H type: Max. 2,048 points (32 modules)		Max. 2,048	Max. 2,048 points	
		Using remote I/O system	Max. 2,048 points	Max. 8,192 points	Max. 8,192	points	
Program c	apacity	Internal memory	Approx. 16k steps	Approx. 60k steps (For FP2-C3P, approx. 120k steps)	Approx. 30	k steps	
		Using expansion memory	Approx. 32k steps	_	Approx. 60 120k steps		
Operation (typical val		Basic instructions	From 0.35µs per instruction	From 0.03µs per instruction	From 0.04µs per instruction	From 0.10µs per instruction	
		High-level instructions	From 0.93µs per instruction	From 0.06µs per instruction		From 0.20µs per instruction	
Operation	Relays	External input (X)	2,048 points	8,192 points	8,192 points		
memory points		External output (Y)	2,048 points	8,192 points	8,192 point	S	
points		Internal relays (R)	4,048 points	14,192 points	14,192 points		
		Timer/counter (T/C)	Total 1,024 points	Total 3,072 points	Total 3,072 points		
		Link relays (L)	2,048 points	10,240 points	10,240 poi	nts	
		Pulse relays (P)	1,024 points	2,048 points	2,048 point	S	
		Alarm relays (E)	None	2,048 points	2,048 points		
	Memory	Data registers (DT)	6,000 words	10,240 words	10,240 woi	ds	
areas		File registers (FL)	0 to 14,333 words (when expanding: 0 to 30,717 words)	FP2-C2L: 32,765 words FP2-C2, FP2-C2P, FP2-C3P: 32,765 words × 3 banks	32,765 woi	rds	
		Link data registers (LD)	256 words	8,448 words	8,448 word	s	
		Timer/counter set value area (SV)	1,024 words	3,072 words	3,072 word	s	
		Timer/counter elapsed value area (EV))	1,024 words	3,072 words	3,072 word	s	
		Index registers (I0 to ID)	14 words	14 words $ imes$ 16 banks	14 words ×	16 banks	
Comment input function		Optional function	Built-in (Internal) function	Optional function			
Clock/calendar function		ion	Optional function	Built-in (Internal) function	Built-in (Internal) function		
ROM operation function		Optional function	FP2-C2L, FP2-C2: Optional function FP2-C2P, FP2-C3P: Built-in (Internal) function	Optional function			

Compatibility of FP2SH and FP2, and Precautions

Hardware Compatibility

Most of the units and related products used with the FP2SH can be used with the FP2, but the following differences should be noted.

Some optional memory units cannot be used.

The only memory unit that can be used with the FP2SH CPU FP2–C2 or FP2–C2L" is the "Part number FP2–EM7 or Model number AFP2208".

The FP2 memory units "Part numbers FP2-EM1, FP2-EM2, FP2-EM3, and FP2-EM6" cannot be used.

The types of optional ROMs are different.

The only ROM that can be used with the FP2SH CPU unit "FP2–C2" is the "Model number AFP5208 or AFP5209". The nonvolatile memory implemented memory unit "Model number AFP2208" can be also used.

The FP2 ROM "Part number AFP2204" and "Part number AFP2205" cannot be used.

The backup battery types are different.

The backup battery for the FP2SH CPU is the "Part number AFP8801" battery with a connector.

The "Part number AFC8801" battery for the FP2 CPU cannot be used.

The calendar timer and comment memories have been installed in advance.

These have already been installed in the FP2SH CPU, and no optional units are needed.

ROM operation functions in the FP2SH

CPUs that support IC memory cards (FP2–C2P and FP2–C3P) have an internal FROM used as a program memory. The internal FROM cannot be replaced.

Software Compatibility

The FP2SH has a higher level of compatibility than the FP2, so there are no functions that cannot be used with the FP2SH. Other factors, such as the number of device points, should be confirmed by checking the specifications comparison table on the previous page.

IC memory cards for the FP2SH

The existing model number becomes the one to be discontinued because of the termination of manufacturing IC memory cards by the parts manufacturer. When placing a new order, specify the new product number.

Termination of Production

Туре	Memory capacity	Model No.	Battery type
SRAM	2MB	AIC52000	Internal secondary battery (Rechargeable type)

New product

Туре	Memory capacity	Model No.	Battery type
SRAM	2MB	AFP2209	Lithium Battery (Interchangeable type)

Notes

For AFP2209

• An interchangeable lithium battery is used. When you use for the first time, install the battery included.

For AIC52000

Memory backup of the SRAM type of IC memory card (AIC52000) Is handled by an internal secondary battery. When the battery is used for the first time, power must be supplied for at least 24 hours to charge it fully. When the battery is fully charged, data is backed up for more than three months with out the power being turned on. Normally, the card should be installed in the PLC and power supplied when using it. Failing to charge the battery periodically can reduce the backup period and the service life of the battery. The backup battery cannot be replaced.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Compatibility of FP2/FP2SH and FP10SH, and Precautions

Hardware Compatibility

The unit, backplane, and other components are not compatible.

The components for the FP2 are used with the FP2SH.

When using the FP2 backplane (AFP25**), the maximum number of expansion points is lower.

With the FP10SH and FP2 backplane H type (AFP25**H), up to three expansion boards can be used, and a maximum of 2048 points controlled, but if using the FP2 backplane with the FP2/FP2SH, only one expansion board can be used, and a maximum of 1600 points controlled.

Different types of IC memory cards are used.

The only type of IC card that can be used with the "Part number FP2–C2P and FP2–C3P" FP2SH CPU is the IC memory card (small PC card). The IC memory card for the FP10SH cannot be used.

Software Compatibility

With the FP2SH, in comparison with the FP10SH, there are no functions that cannot be used. For other detailed specifications, check the specifications comparison table on the previous page.

Programming Tool Restrictions

Restrictions on usable programming tools depending on the units

Type of programming tool		Type of unit		
		FP2	FP2SH	
Windows software	FPWIN GR Ver.2	Used Note 1)	Used Note 1)	
	FPWIN GR Ver.1	Used Note 1)	Used Note 1)	
Windows software Conforms to	FPWIN Pro Ver.6	Used	Used Note 2)	
IEC61131-3	FPWIN Pro Ver.5	Used Note 3)	Used Note 3)	
Handy programming	AFP1113V2	Not used	Not used	
unit	AFP1114V2			
	AFP1113	Not used	Not used	
	AFP1114			
	AFP1111A	Not used	Not used	
	AFP1112A			
	AFP1111			
	AFP1112			
FP Memory Loader	AFP8670	Used	Used	
	AFP8671		Note 4)	

Note 1) FPWIN GR Ver.2.91 or later version is necessary to use the FP2SH CPU (32k type). FPWIN GR Ver.2.40 or later version is necessary to use the multi communication unit. FPWIN GR Ver.2.71 or later version is necessary to use the MEWNET-VE Link Unit. The FNS Unit and FMU Unit cannot use to FPWIN GR.

Note 2) FPWIN Pro Ver.6.3 or later version is necessary to use the FP2SH CPU (32k type).

Note 3) FPWIN Pro Ver.5.02 or later version is necessary to use the multi communication unit.

-FPWIN Pro Ver.5.24 or later version is necessary to use the MEWNET-VE Link Unit.

-FPWIN Pro Ver.5.24 or later version is necessary to use the FNS Unit.

-FPWIN Pro Ver.5.3 or later version is necessary to use the FMU Unit.

Note 4) FP Memory Loader Ver.2.1 or later version is necessary to use the FP2SH CPU (32k type). When using FP2SH CPU (120k type), only the 1st program and comments can be transferred.

Note: Precautions concerning version upgrade

• In case of using FPWIN GR Ver.1, please purchase upgrade model FPWIN GR Ver.2.

• FPWIN GR Ver. 2.0 can be upgraded to Ver. 2.1 or later free of charge at our web site.

• FPWIN Pro Ver. 6.0 can be upgraded to Ver. 6.1 or later free of charge at our web site.

Overview

Overview

1.1.1 Basic Configuration by Number of Slots

The building block scheme allows you to combine units as desired.

Five types of backplanes and Two types of backplanes H types are available for the FP2/FP2SH. A variety of input/output units can be installed as desired on the backplane.

Although most of the I/O units and intelligent units can be combined freely in the layout, you should check the following three points when selecting your units:

- Restrictions on unit types 🖛 section 1.2.2.1
- Limitations on the internal current consumption 🖛 section 1.2.2.2
- Limitations on the number of modules of the backplane 🖛 page 1 4

FP2 backplane

5 modules	7 modules
9 modules	12 modules
14 modules	
FP2 backplane H type	

Basic backplane (11 modules)

Expansion backplane (10 modules)

Following two kinds of backplanes are available.

- 1) FP2 backplane (AFP25***)
- 2) FP2 backplane H type (AFP25****H)

These two backplanes cannot be used in combination.

Carefully select the type of backplanes before you order.

Restriction on the number of modules of the backplane (For master backplane)

The number of units that can be installed is determined by the number of modules of the backplane used, the power supply unit to be installed, and the CPU.

1 module type CPU	Standard type CPU
2 modules type CPU	CPU with 64-point input, CPU with S-LINK
1 module type power supply unit	100V 2.5A, 200V 2.5A
2 modules type power supply unit	100 to 240V 5A, 24V DC 5A

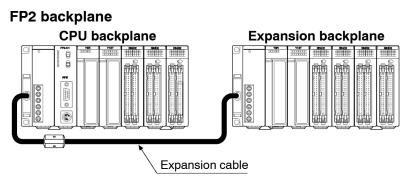
CPU backplane

FP2 backplane

	5-module type	7-module type	9-module type	(12-module type)	14-module type
1 module type CPU and	3 slots free	5 slots free	7 slots free	10 slots free	12 slots free
1 module type power supply unit					
2 modules type CPU and	2 slots free	4 slots free	6 slots free	9 slots free	11 slots free
1 module type power supply unit					
1 module type CPU and	2 slots free	4 slots free	6 slots free	9 slots free	11 slots free
2 module type power supply unit			0 <u>000000</u>	(<u>)</u>	(h 9000000000)
2 modules type CPU and	1 slot free	3 slots free	5 slots free	8 slots free	10 slots free
2 module type power supply unit					

* slots free: Number of slots where units can be installed

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com


FP2 backplane H type

	11-module type
1 module type CPU and 1 module type power supply unit	8 slots free
2 module type CPU and 1 module type power supply unit	7 slots free
1 module type CPU and 2 module type power supply unit	8 slots free
2 module type CPU and 2 module type power supply unit	7 slots free

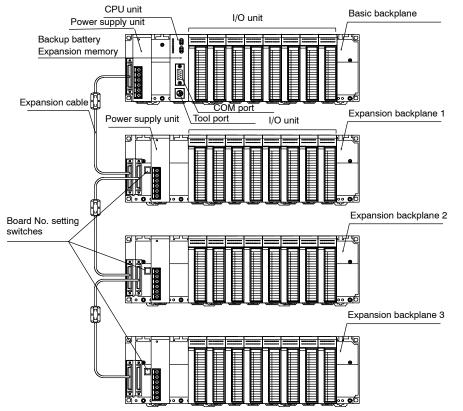
A maximum of eight I/O units (including the unit built in the CPU) can be controlled per backplane. Even if further I/O units are installed, they are not recognized.

Note) When using the CPU unit with S–LINK, seven slots are free, however, the units actually usable are only six. (Refer to Chapter 3 I/O Allocation.)

1.1.2 Expansion of Backplane

Only one backplane can be added-on for expansion.

Expansion is simply connecting a new backplane with a special expansion cable. Any backplane other than a 5-module type can be used for expansion.


Notes

- A 5-module type backplane cannot be expanded.
- A 5-module type backplane cannot be added on for expansion.
- Only one backplane can be added-on for expansion.
- A power supply unit is also necessary on an expansion backplane.

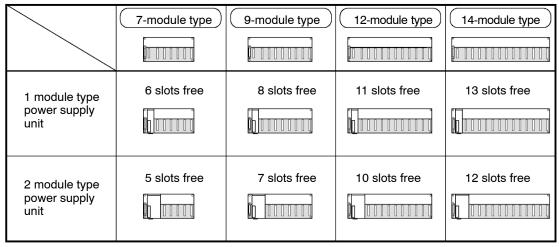
🖛 next page

- Do not install a CPU on an expansion backplane.
- There is no need to make the number of modules on the expansion backplane equal to the number of modules on the CPU backplane.

The basic FP2 backplane H type that the CPU unit can be installed and the expansion backplane H type that only the I/O units and the intelligent I/O units can be installed are available.

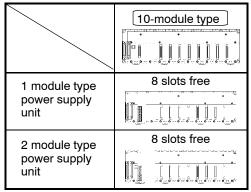
A maximum of eight I/O units (including the unit built in the CPU) can be controlled per backplane. Even if further I/O units are installed, they are not recognized.

Up to three expansion backplanes can be added on for expansion.


Use the board No. setting switches on the board to distinguish the expansion backplane.

A power supply unit is also necessary on an expansion backplane.

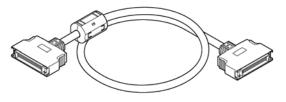
Restriction on the number of modules of the backplane (For expansion backplane)


The number of units that can be installed is determined by the number of modules of the backplane used and the power supply unit to be installed.

FP2 backplane

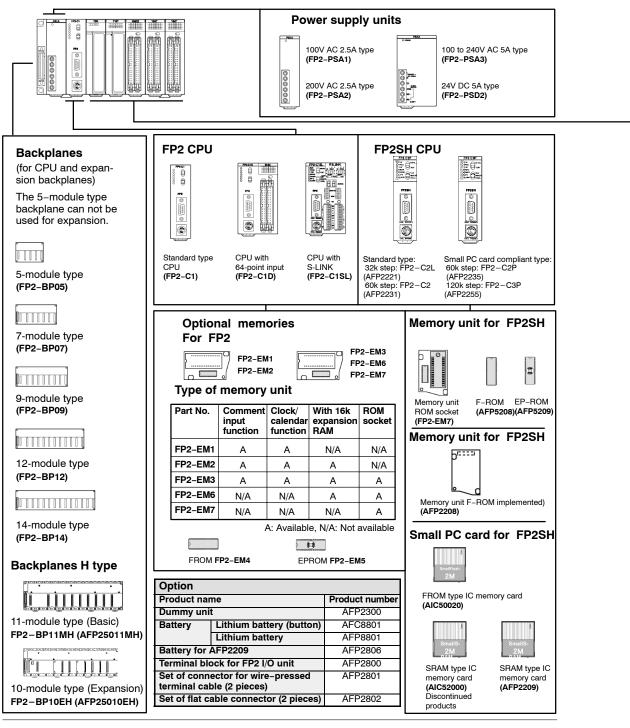
* slots free: Number of slots where units can be installed

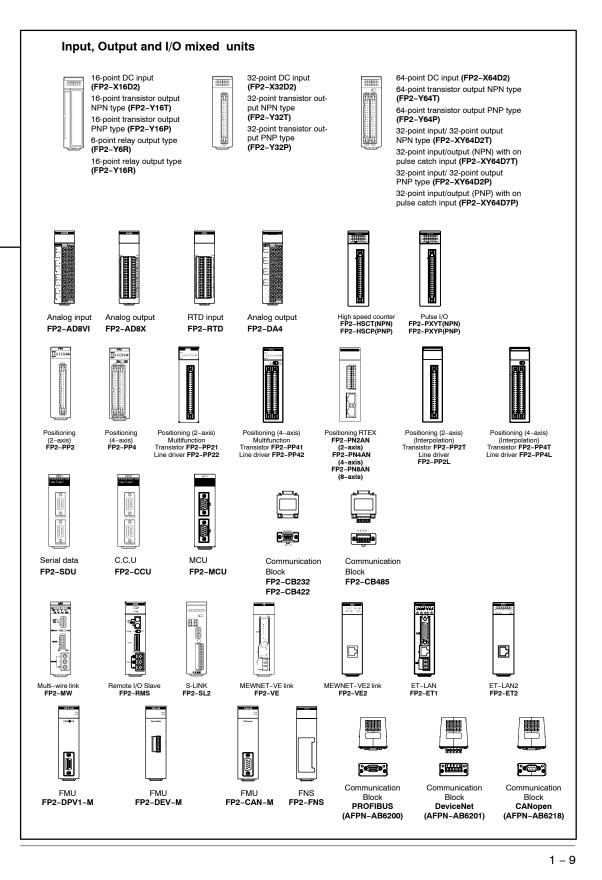
FP2 backplane H type



Note) Although the connectors for installing I/O units are free with a 1-module type power supply unit, they cannot be used.

Expansion cable


Order number	Length	Ferrite core
FP2-EC	60 cm	1
FP2-EC2	2 m	2


Note) With the backplaine H type, the total cable length can be arranged within 3.2 m.

1.2 Unit Types and Combinations

1.2.1 Line-Up of Backplanes and Units

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

1.2.2 Combinations That Can be Used and Restrictions

1.2.2.1 Restrictions on Unit Types

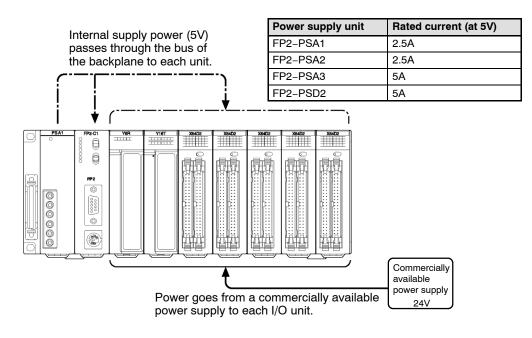
/	Backplanes and units used	Backplan	ie	Backplan H type	ie	Power supply unit	CPU unit	Re- mote I/O	Input unit	Output unit	I/O mixed unit	
	stem figuration	(5- module type)	(7-, 9-, 12-, 14- module type)	Basic (11– module type)	Expan- sion (10- module type)	unit		slave unit			unit	
Insta pow	J backplane all in order from the left to the right, the er supply unit, the CPU unit, the I/O and intelligent units.	A	A	A	N/A	A	A	N/A	А	A	Α	
Insta pow units	ansion backplane all in order from the left to the right, the er supply unit, the I/O and the intelligent s.	N/A	A	N/A	A *4	A	N/A	N/A	А	A	A	
Slave station system backplane	Master backplane for slave station system Install in order from the left to the right, the power supply unit, the Remote I/O slave unit,the I/O and the intelligent units.*Replace the CPU on the CPU backplane with a remote I/O slave unit.	A	A	A	N/A	A	N/A	A	A	A	A	
e	Expansion backplane for slave station system Install in order from the left to the right, the power supply unit, the I/O and the intelligent units." Same as the installa- tion of the expansion backplane.	A	A	A	A	A	N/A	N/A	A	A	A	

Limitations on Combining Link Units

Unit type and mode	When CPU unit is FP2	When CPU unit is FP2SH	
Computer communication unit	Only one unit (see note)	Can be installed within 5 units in combination	
Multi-wire Link unit (MEWNET-W mode)	Can be installed within 3 units in combination with W link, CCU and MCU (PC link mode).	with W link, CCU and MCU (PC link mode).	
	Can be installed within 2 units in combination v	vith MCU in PC (PLC) link mode.	
Multi-wire Link unit (MEWNET-W2 mode) ET-LAN unit	Up to 3 units can be used. Up to 2 units out of 3, when including PC (PLC) link.	Up to 8 units can be used. Up to 2 units out of 8, when including PC (PLC) link.	
Multi Communication unit (PC (PLC) link mode)	Can be installed within 3 units in combination with W link, CCU and MCU.	Can be installed within 5 units in combination with W link, CCU and MCU.	
	Can be installed within 2 units in combination v	vith W link unit in PC (PLC) link mode.	
Multi Communication unit (Computer link mode)	Up to 8 units can be used.		
MEWNET-VE Link Unit	Not Available	Can be installed within 2 units in combination with Multi Communication Unit.	

🔊 Note

Depending on the location of the connected ports and the commands used for communication, up to 3 units can be used. For more details, refer to the Computer Communication Unit Manual.


Out- put unit	I/O mixed unit	Ana- log input unit	Ana- log out-	High - spe ed	Pulse I/O unit	Posi- tion- ing unit	Posi- tion- ing unit	Posi- tion- ing unit	Posi- tion- ing unit	Serial data unit	Com- put- er com-	S- LINK unit	Multi-v	vire link	unit	ET- LAN unit	Mul- ti com-	ME W- NET -VE	FNS unit	FMU unit
		unit	put unit	ea cou nter unit		(PP2 /PP4)	(Mul- ti– func- tion type)	RTEX	Inter- pola- tion type		mu- nica- tion unit		MEW- NET- F mode	MEW- NET- W mode	MEW- NET- W2 mode		mu- nica- tion	-ve Link Unit		
А	А	А	A	A *1	A *1	A	A	А	А	А	A *2	А	A *3	A *2	A *2	A *2	A *2	A *2	А	А
A	А	A	A	A *1 *5	A *1 *5	A	A	А	А	А	N// A	А	A *3	N/ A	N/ A	N/ A	A *2	N/ A	A	А
А	А	N/ A	N/ A	A *6	A *6	A *7	N/ A	N/ A	N/ A	А	N// A	A *8	N/ A	N/ A	N/ A	N/ A	N/ A	N/ A	N/ A	N/ A
А	А	N/ A	N/ A	A *6	A *6	A *7	N/ A	N/ A	N/ A	А	N// A	A *8	N/ A	N/ A	N/ A	N/ A	N/ A	N/ A	N/ A	N/ A

A: Available N/A: Not available

👦 Notes

- When "Mode B: Unit with interrupt function" has been specified, the unit will be treated as interrupt unit, and 8 interrupts per unit will be available for use. However, when "Mode B" has been set for the unit, 2 units can be used with 1 CPU unit. When "Mode C: Intelligent unit that generate interrupts" has been specified, and 1 interrupt per unit will be available for use. However, when "Mode C" has been set for the unit, 8 units can be used with 1 CPU unit.
- 2) Check the limitations on combining link units given below.
- 3) In the MEWNET-F mode, up to four units can be used counting the CPU and expansion sides.
- 4) With the backplane H type, the total expansion cable length can be arranged within 3.2 m.
- 5) The unit cannot be installed on the 31st slot (last slot) when using the H-type backplane.
- 6) The interrupt function is not available for the backplane on the slave station system.
- 7) With the backplane on the slave station system, the time taken from the startup until the completion of positioning should be longer than a scan time.
- 8) With the backplane on the slave station system, I/O points cannot be set including 96 input points and 96 output points.

1.2.2.2 Limitations on Current Consumption

Internal supply power (5V DC)

The 5V DC power used for driving the internal circuit of each unit is supplied from the power supply unit through the internal bus of the backplane.

External supply power (24V DC)

The 24V DC power supply used as the input power supply of the input units and the output circuit driving power of the output units are supplied from the external terminal of each unit.

For 24V power supply, commercially available power supply equipment is used.

Combining units and selecting a backplane

The current consumed by each unit is shown in the following pages.

Give consideration to the combination of units so that the rated capacity of 5V DC and 24V DC power supplies should not exceeded.

Example of current consumption calculation

The table below shows the combination of typical units on a 9-module type backplane.

Туре	Number of units and backplane used	Current consumption at 5V DC (mA)	Current consumption at 24V DC (mA)
CPU (FP2–C1)	1	410	0
Backplane (FP2-BP09)	1	60	0
Input unit (FP2-X16D2)	3	60×3=180	8×16×3 = 384
Output unit (FP2-Y16R)	4	120×4=480	160×4=640
Total current consumption		1130	1024

Table of current consumption at 5V DC

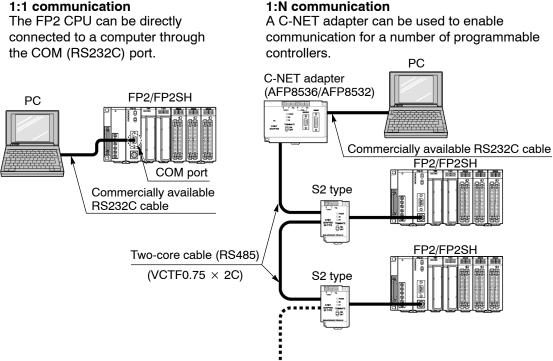
Туре				Part number	Current con- sumption at 5V DC (mA)	
FP2 CPU				FP2-C1	410 or less	
				FP2-C1D	530 or less	
				FP2-C1SL	630 or less	
				FP2-C1A	1060 or less	
FP2SH CPU				FP2-C2L	750 or less	
				FP2-C2	750 or less	
				FP2-C2P	750 or less	
				FP2-C3P	750 or less	
Backplane				FP2-BP05	5 or less	
				FP2-BP07	60 or less	
				FP2-BP09	60 or less	
				FP2-BP12	60 or less	
			FP2-BP14	60 or less		
Backplane H	l type			FP2-BP11MH	5 or less	
				FP2-BP10EH	60 or less	
nput unit	DC input	16-point te	rminal type, 12 to 24V DC	FP2-X16D2	60 or less	
		32-point connector type, 24V DC		FP2-X32D2	80 or less	
		64-point co	nnector type, 24V DC	FP2-X64D2	100 or less	
Output	Relay out-	6-point terr	ninal type	FP2-Y6R	50 or less	
unit	put	16-point te	rminal type	FP2-Y16R	120 or less	
	Transistor output	16-point te	rminal NPN type	FP2-Y16T	100 or less	
		32-point co	nnector NPN type	FP2-Y32T	130 or less	
		64-point co	nnector NPN type	FP2-Y64T	210 or less	
		16-point te	rminal PNP type	FP2-Y16P	80 or less	
		32-point co	nnector PNP type	FP2-Y32P	130 or less	
		64-point co	nnector PNP type	FP2-Y64P	210 or less	
/O mixed	32-point 24V	DC input/32-	point connector NPN output type	FP2-XY64D2T, FP2-XY64D7T	160 or less	
unit	32-point 24V	DC input/32-	point connector PNP output type	FP2-XY64D2P, FP2-XY64D7P	160 or less	
Intelligent	Analog input	unit (Voltage	e/current type)	FP2-AD8VI	400 or less	
unit	Analog input	unit (Channe	el type)	FP2-AD8X	300 or less	
	RTD input un	it		FP2-RTD	300 or less	
	Analog outpu			FP2-DA4	600 or less	
	High-speed	NPN		FP2-HSCT	450 or less	
	counter unit	PNP		FP2-HSCP	450 or less	
	Pulse I/O	NPN		FP2-PXYT	500 or less	
	unit	PNP		FP2-PXYP	500 or less	
	Positioning	2-axis type		FP2-PP2	225 or less	
	unit	4-axis type		FP2-PP4	400 or less	
	Positioning		Transistor output type	FP2-PP21	200 or less	
	unit (Multi-	type	Line driver output type	FP2-PP22	200 or less	
	function type)	4-axis	Transistor output type	FP2-PP41	350 or less	
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	type	Line driver output type	FP2-PP42	350 or less	
	Positioning	2-axis type		FP2-PN2AN	300 or less	
	unit RTEX	4-axis type		FP2-PN4AN	300 or less	
		8-axis type		FP2-PN8AN	300 or less	
	Positioning	2-axis	Transistor output type	FP2-PP2T	300 or less	
	unit (Inter-	type	Line driver output type	FP2-PP2L	300 or less	
	polation	4-axis	Transistor output type	FP2-PP4T	300 or less	
	type)	type	Line driver output type	FP2-PP4L	300 or less	
				FP2-SDU	60 or less	
	Serial data ur	าเป				

next page

Туре				Part number	Current con- sumption at 5V DC (mA)
Intelligent	C.C.U.			FP2-CCU	60 or less
unit	S-LINK unit			FP2–SL2	130 or less
	Multi-wire lin	ık unit		FP2-MW	220 or less
	Remote I/O S	Blave Unit		FP2-RMS	150 or less
	ET-LAN unit	ET-LAN unit			670 or less
	MEWNET-V	E Link unit		FP2-VE	670 or less
	FNS unit	FNS unit		FP2-FNS	55 or less
		FP-FNS	PROFIBUS	AFPN-AB6200	230 or less
		Block	Device Net	AFPN-AB6201	65 or less
			CAN open	AFPN-AB6218	65 or less
	FMU unit	PROFIBUS		FP2-DPV1-M	450 or less
		Device Net		FP2-DEV-M	150 or less
		CAN open		FP2-CAN-M	450 or less

Table of current consumption at 24V DC

Туре			Part number	Current consumption at 24V DC (mA)
Input unit	DC input	16-point terminal type, 12 to 24V DC	FP2-X16D2	8 or less per one point
		32-point connector type, 24V DC	FP2-X32D2	4.3 or less per one point
		64-point connector type, 24V DC	FP2-X64D2	4.3 or less per one point
Output unit	Relay output	6-point terminal type	FP2-Y6R	70 or less
		16-point terminal type	FP2-Y16R	160 or less
	Transistor output	16-point terminal NPN type	FP2-Y16T	120 or less
		32-point connector NPN type	FP2-Y32T	140 or less
		64-point connector NPN type	FP2-Y64T	250 or less
		16-point terminal PNP type	FP2-Y16P	70 or less
		32-point connector PNP type	FP2-Y32P	150 or less
		64-point connector PNP type	FP2-Y64P	270 or less
I/O mixed unit		input/32-point connector NPN	FP2-XY64D2T,	Input: 4.3 or less per one point
	output type		FP2-XY64D7T	Output: 120 or less
	32-point 24V DC output type	C input/32-point connector PNP	FP2-XY64D2P, FP2-XY64D7P	Input: 4.3 or less per one point
				Output: 130 or less


Notes

- The input unit displays the current flowing to the internal circuit. The other units display the current value required to drive the internal circuit. This value does not include the load current of the output unit.
- Refer to the manual of the particular unit you are using to confirm the current consumed at 24V by the S-LINK units, Positioning units, High-speed counter units and Pulse I/O units.

1.3 **Expansion Function**

1.3.1 Computer Link

1:1 communication

A maximum of 32 stations can be connected.

Since a COM (RS232C) port and TOOL (RS232C) port comes standard on the CPU for the FP2/FP2SH, direct communication with the computer can be achieved without the addition of any intelligent units.

Using a host computer program, the relay conditions and register contents of the CPU can be read and written.

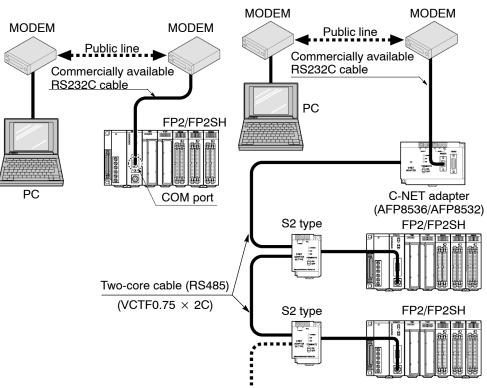
With communications from a host computer, communication programs are unnecessary on the CPU side.

Table of specifications

Item	Description			
	1:1 communication	1:N communication		
Communication method	Half duplex	Half duplex		
Synchronization method	Start-stop synchronous system			
Communication path	RS232C cable	Two-core cable (VCTF 0.75mm ² \times 2C)		
Transmission distance	Max. 15m/49.2ft.	Max. 1200m/3,937ft.		
Transmission speed (Baud rate)	1200bps/2400bps/4800bps/9600bps/ 19200bps/38400bps/57600bps/115.2Kbps			
Transmission code	ASCII			
Transmission format	Stop bit: 1 bit/2 bits Parity check: none/even/odd Character bits: 7 bits/8 bits			

Necessary devices in configuration

1:1 communication	1:N communication		
FP2/FP2SH	FP2/FP2SH		
Commercially available computer	Commercially available computer		
Commercially available RS232C cable (AFB85813/AFB85853 or equivalent)	Commercially available RS232C cable (AFB85813/AFB85853 or equivalent)		
	C-NET adapter (AFP8536/AFP8532) $ imes$ 1 piece		
	C-NET adapter S2 type (AFP15402) $ imes$ number of PLC		
	Two-core cable (VCTF 0.75mm ²)		


1.3.2 Connection of MODEM

1:1 communication

Connections to a MODEM can be made using the COM port.

1:N communication

Using the C-NET adapter enables MODEMs to be connected for multiple programmable controller.

A maximum of 32 stations can be connected.

The CPU of the FP2/FP2SH includes a COM (RS232C) port and TOOL (RS232C) port as standard equipment, making it possible to connect a MODEM to perform programming and computer linking from a remote location using a public telephone line.

When the power supply of FP2/FP2SH is turned on, it will verify whether a MODEM is connected, and, if a MODEM is, it will automatically transmit the AT command to set the MODEM for automatic reception.

Since the reading and writing of the relay conditions and register contents of the programmable controller can be performed from the host computer, this function is applicable for remote monitoring systems.

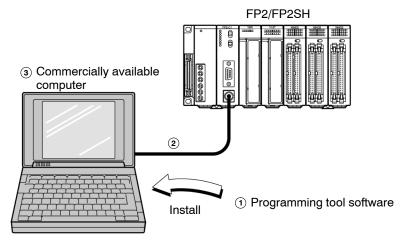
When using the TOOL port, you can use programming tool software (NPST-GR/FPWIN GR) and perform reading and writing of the programmable controller program and maintenance operations via MODEM.

During 1:1 communication using the COM port, an error alarm can be issued from the programmable controller.

1.3 Expansion Function

Table of specifications

Item	Description		
	1:1 communication	1:N communication	
Communication method	Half duplex		
Synchronization method	Start-stop synchronous system		
Transmission speed (Baud rate)	2,400bps/4,800bps/9,600bps/19,200 bps	9,600bps/19,200bps	
Transmission code	ASCII		
Transmission format	Character bit: 7 bits, parity check: odd and stop bit: 1 bit		
	Character bit: 8 bits, parity check: non	e and stop bit: 1 bit	


Necessary devices in configuration

1:1 communication	1:N communication
FP2/FP2SH	FP2/FP2SH
Commercially available computer	Commercially available computer
MODEM	MODEM
Commercially available RS232C cable	Commercially available RS232C cable
* When using the TOOL port, an FP PC cable M5 type (AFC8513) and a self-made cable are necessary.	C-NET adapter (AFP8536/AFP8532) $ imes$ 1 piece
	C-NET adapter S2 type (AFP15402) $ imes$ number of PLC
	Two-core cable (VCTF 0.75mm ²)

1.4 Programming Tools

1.4.1 Tools Needed for Programming

Necessary tools

1 Programming tool software

This is a program editing, debugging and document creating software package that can be used with all programmable controllers in the FP series.

2 FP PC cable

This cable needed for connection between the FP2/FP2SH and the computer. When connecting to a computer (IBM PC/AT or 100% compatible), use a commercially available adapter.(resection 1.4.2)

For the following, use commercially available products.

③ Commercially available computer

1.4 Programming Tools

1.4.2 Software Environment and Suitable Cable

Standard ladder diagram tool software FPWIN-GR Ver.2

Type of software		OS (Operating system)	Hard disk capacity	Product No.
FPWIN GR Ver. 2 English-language	Full type	Windows® 98 Windows®Me Windows®2000	40MB or more	AFPS10520
menu Upgr	Upgraded version	Windows®2000 Windows®XP Windows Vista®		AFPS10520R

1) The upgrade version is not available for Ver.6.

2) Ver.6.0 can be upgraded to Ver. 6.1 or later free of charge at our web site

Type of software	OS (Operating system)	Hard disk capacity	Product No.
FPWIN GR Ver. 6 English–lan- guage menu	Windows ®2000 Windows ® XP Windows Vista ®	100MB or more	AFPS50560

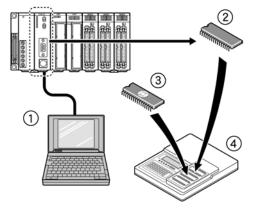
1) The upgrade version is not available for Ver.6.
2) Ver.6.0 can be upgraded to Ver. 6.1 or later free of charge at our web site

our web site

Type of computer and suitable cable

For the connection between a computer (RS232C) and the control unit (RS232C) D-sub connector cable

PC side connector	PLC side connector	Specifications	Product No.
D-sub 9-pin	Mini DIN round 5-pin	L type (3 m)	AFC8503
	Mini DIN round 5-pin	Straight type (3 m)	AFC8503S


Note

A USB/RS232C conversion cable is necessary to connect with a personal computer without a RS232C port using a PC connection cable.

1.4.3 Tools Needed for ROM Creating

When Creating ROM with a Commercially Available ROM Writer with Optional Memory (FROM)

Necessary tools

1 Programming tool software and cable (r section 1.4.1)

Use a commercially available computer installed with the programming tool software and an FP PC cable.

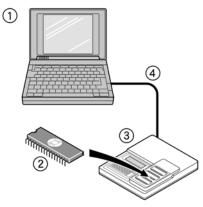
2 Optional memory FROM

For FP2, FP2-EM4 (SST-29EE010-120-4C-PH or equivalent, SILICOM STOR-AGE TECHNOLOGY, INC.) For FP2SH, AFP5208 (SST-29EE020-150-4C-PH or equivalent, SILICOM STORAGE TECHNOLOGY, INC.)

③ Optional memory EPROM

For FP2, FP2-EM5 (M27C1001–12F1 or equivalent, SGS–THOMSON MI-CROELECTRONICS) For FP2SH, AFP5209 (M27C2001–150F1 or equivalent, SGS–THOMSON MI-CROELECTRONICS)

For the following, use commercially available products.


Commercially available ROM writer A ROM writer than can be used with memories (2) and (3).

Note

- 1) The above explanation describes the case where the memory unit is used in combination with the F-ROM and EP-ROM. As the nonvolatile memory has been implemented in the memory unit (Model number AFP2208), a commercial ROM writer cannot be used for writing.
- 2) The parts for the optional memory to be used differ depending on FP2 or FP2SH.

When Creating ROM with Programming Tool Software and a Commercially Available ROM Writer

Necessary tools

1 Programming tool software (r section 1.4.1)

Use a commercially available PC installed with the programming tool software.

2 Optional memory EPROM

For FP2, FP2-EM5 (M27C1001–12F1 or equivalent, SGS–THOMSON MI-CROELECTRONICS) For FP2SH, AFP5209 (M27C2001–150F1 or equivalent, SGS–THOMSON MI-CROELECTRONICS)

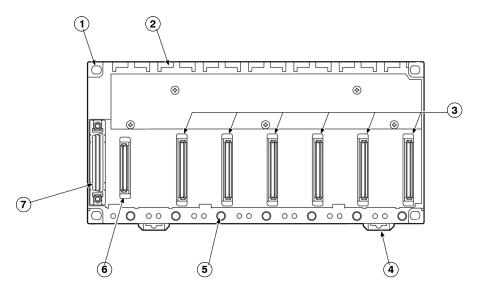
For the following, use commercially available products.

3 Commercially available ROM writer

A ROM writer than can be used with memory 2.

(4) Commercially available centronics cable or commercially available RS232C cable

Use a cable that conforms with the specifications of the ROM writer.


- Note
- 1) The above explanation describes the case where the memory unit is used in combination with the EP-ROM. As the nonvolatile memory has been implemented in the memory unit (Model number AFP2208), a commercial ROM writer cannot be used for writing.
- 2) The parts for the optional memory to be used differ depending on FP2 or FP2SH.

Parts and Functions

2.1 Backplane and Expansion Cable

2.1 Backplane and Expansion Cable

2.1.1 Backplane

Parts Terminology and Functions

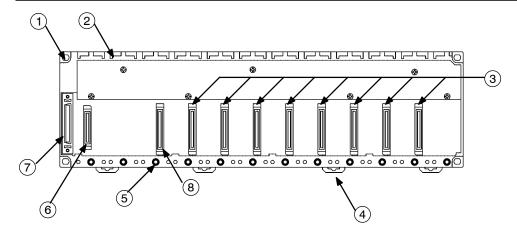
1 Backplane mounting holes

for mounting the backplane to the control panel. Use M4 screw for the mounting.

2 Unit guides

Align the tab on the unit with this guide when installing the unit to the backplane. For use as the basic backplane (CPU backplane), from the left side of the backplane, install the power supply unit, CPU, I/O units, and intelligent units, in this order.

For use as an expansion backplane, from the left side of the backplane, install the power supply unit, I/O units, and intelligent units, in this order.


- ③ **Connector for various units** Install a CPU, input, or output unit. When installing a CPU, be sure to install it next to a power supply unit.
- (4) **DIN rail attachment lever** allows attachment to a DIN rail.
- (5) Unit installation holes for installing the unit to the backplane. Use the screw supplied with the unit for installation.
- **(6)** Connector for power supply unit
- Connector for expansion cable for more details regarding the cable connecting, refer to section 4.1.3. This connector is not present on a 5-module type backplane.

2.1 Backplane and Expansion Cable

Type of Backplane

Туре	Use	Number of module	Part number	Weight
5-module type	Basic system only	5	FP2-BP05	Approx. 180g
7-module type	Basic and expansion system	7	FP2-BP07	Approx. 280g
9-module type		9	FP2-BP09	Approx. 350g
12-module type		12	FP2-BP12	Approx. 470g
14-module type		14	FP2-BP14	Approx. 530g

2.1.2 Basic Backplane H Type (FP2–BP**MH)

Parts Terminology and Functions

1 Backplane mounting holes

for mounting the backplane to the control panel. Use M4 screw for the mounting.

2 Unit guides

Align the tab on the unit with this guide when installing the unit to the backplane. From the left side of the backplane, install the power supply unit, CPU, I/O units, and intelligent units, in this order.

- (3) Connector for various units Install various unit.
- (4) DIN rail attachment lever
 - allows attachment to a DIN rail.
- **5** Unit installation holes

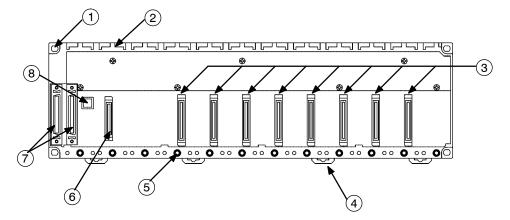
for installing the unit to the backplane. Use the screw supplied with the unit for installation.

- 6 Connector for power supply unit
- Connector for expansion cable for more details regarding the cable connecting, refer to section 4.1.3.

(8) Connector for CPU unit

The position to install the CPU unit is fixed.

Type of Backplane


Туре	Use	Number of module	Part number	Weight
11-module type	Basic system only	11	FP2-BP11MH	Approx. 470g

🔊 Note

The color of letters on the printed board is yellow to make easier to distinguish the FP2 backplane H type from the FP2 backplane.

2.1 Backplane and Expansion Cable

2.1.3 Expansion Backplane H Type (FP2–BP**EH)

Parts Terminology and Functions

1 Backplane mounting holes

for mounting the backplane to the control panel. Use M4 screw for the mounting.

2 Unit guides

Align the tab on the unit with this guide when installing the unit to the backplane. From the left side of the backplane, install the power supply unit, I/O units, and intelligent units, in this order.

- (3) Connector for various units Install I/O unit.
- (4) **DIN rail attachment lever** allows attachment to a DIN rail.
- **5** Unit installation holes

for installing the unit to the backplane. Use the screw supplied with the unit for installation.

- 6 Connector for power supply unit
- **(7)** Connector for expansion cable

for more details regarding the cable connecting, refer to section 4.1.3.

8 Board number setting switch

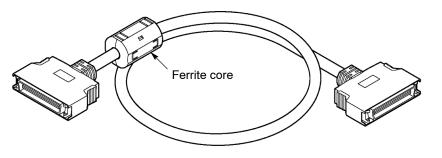
is used to set a bord number for the expansion backplane. I/O numbers are assigned according to the board number set the board numbers in increasing order, 1, 2 and 3 from the board close to the basic backplane.

(Do not set 4 or higher numbers as proper operation cannot be guaranteed).

Type of Backplane

Туре	Use	Number of module	Part number	Weight
10-module type	Expansion system only	10	FP2-BP10EH	Approx. 470g

🔊 Note

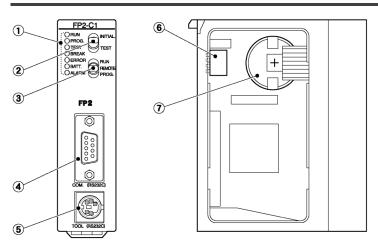

The color of letters on the printed board is yellow to make easier to distinguish the FP2 backplane H type from the FP2 backplane.

2.1 Backplane and Expansion Cable

2.1.4 Expansion Cable

Order number	Length	Ferrite core	Weight
FP2-EC	60 cm	1	Approx. 200 g
FP2-EC2	2 m	2	Approx. 400 g

Note) With the backplaine H type, the total cable length can be arranged within 3.2 m.


🔊 Note

Connect the connector on the side of the ferrite core to the CPU backplane.

2.2 FP2 CPU

2.2 FP2 CPU

2.2.1 Standard Type CPU (FP2–C1)

Parts Terminology and Functions

- (1) Status indicator LEDs (page 2 9) display the operating condition and error statuses.
- (2) Initialize/test switch (repage 2 9) is used to clear the errors, initializes the operation memory and set the test operation.
- ③ Mode selector (page 2 10) is used to change the operation mode of the PLC.
- (4) COM port (RS232C) (page 2 − 11)

is used to connect a computer or general-serial devices.

(5) Tool port (RS232C)

is used to connect a programming tool.

- ⑥ Operation condition switches (page 2 10) are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.
- Memory backup battery for backup of the internal memory (RAM).
 Part number: AFC8801 (CR2450 or equivalent)

Note

The settings of the operation condition switches become active when the power is turned on.

Status Indicator LEDs

These LEDs display the current mode of operatin or the occurrence of error.

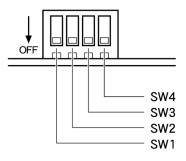
LED	Description	
RUN (green)	This lights in the RUN mode, to indicate that the program is being executed. It flashes during forced input/output.	
PROG. (green)	This lights in the PROG. mode. Operation stops while this LED is lighted. It flashes when waiting for connection of slave station on remote I/O system. If the memory is initialized, the brightness dims, indicating that initialization is being executed.	
TEST (green)	This lights in the test operation mode.	
BREAK (green)	This lights in the operation halts at a break during a test run or halts during the step operation mode for the test run.	
ERROR (red)	This lights if an error is detected during the self-diagnostic function.	
BATT. (red)	This lights when the voltage of the backup battery drops below a specific value.	
ALARM (red)	This lights if a hardware error occurs, or if operation slows because of the program, and the watchdog timer is activated.	

Initialize/Test Switch

This switch clears errors, initializes the operation memory and sets the test operation mode.

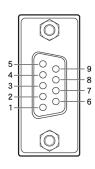
Switch position	Operation mode
INITIALIZE (upward)	In the PROG. mode: The contents of the operation memory are initialized. However, the system register (including the I/O map) and the program are not initialized. If the error of self-diag- nostic error code 42 or lower is occured, the special internal relays R9000 to R9008 and the special data register DT90000 are not cleared. In the RUN mode: Operation errors, remote I/O system errors, and battery errors are cleared.
(center)	The switch should normally be left in this position.
TEST (downward)	Setting this switch to the downward position in the PROG. mode, accesses the test mode. Switching to the RUN mode in this state, initiates test operation. To return from the test mode to the normal operation, return this switch to the center position in the PROG. mode.

By turning on the initialize/test switch while in the PROG.mode, you can be specify the type of operation memory to be cleared with system register 4.


2.2 FP2 CPU

Mode Selector

Use the mode selector to start and stop the operation. For test operations, set the initialize/test switch to TEST position.


Selector position	Operation mode
RUN (upward)	This sets the RUN mode. The program is executed, and operation begins.
REMOTE (center)	This enables operation to be started and stopped from a programming tool. At the stage where the selector is changed, when switching from the PROG. to the RE-MOTE mode, the system remains in the PROG. mode and when switching from the RUN to the REMOTE mode, it remains in the RUN mode.
PROG. (downward)	This sets the PROG. mode. In this mode, programming can be done using tools, the test operation mode can be accessed and the operation memory can be initialized using the Initialize/tset switch.

Operation Condition Switches

Switch	Item	Switch position		
		off (factory setting)	on	
SW1	Baud rate for tool port	System register setting (Default value: 19,200bps)	9,600bps	
SW2	Program memory selection	Internal RAM	Optional memory (ROM)	
SW3	Program memory protection	Write enabled	Write protected	
SW4	Not used	—	—	

COM Port (RS232C) Pin alignment

Pin	Signal name		Signal dir	ection
number				Destination (Field device)
1	Frame ground	FG		
2	Send data	SD		\rightarrow
3	Received data	RD		←
4	Request to send (always on)	RS		→
5	Clear to send	CS		Ļ
6	Not used	-		
7	Signal ground terminal	SG		
8	Not used	-		
9	Equipment ready (always on)	ER		→

Note

The serial data communication control instruction (F144) cannot be executed unless pin 5 is turned on.

Communications specifications

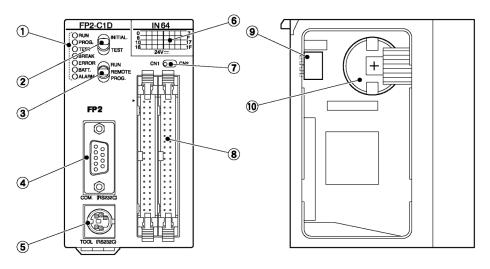
Electrical characteristics conform to EIA RS232C.

The baud rate and transmission format are decided by system registers.

The table below shows the settings in the default state.

Item	Description
Mode selection Computer link Baud rate	19200 bps
Data bit length	8 bits
Parity check	Odd parity
Start bit length	1 bit
Stop bit length	1 bit

The starting and ending codes when using a computer link are determined by the MEW-TOCOL-COM.


When using the general–purpose communication function (serial data communication control instruction "F144"), the setting of system register 412 should be changed.

The serial data communication control instruction can be used to switch between the computer link function and the general–purpose communication function.

If the transmission speed is 38,400 bps or higher, the transmission distance over which communication is possible is limited to within 3m/9.84ft.

2.2 FP2 CPU

2.2.2 CPU with 64 Points Input (FP2–C1D)

Parts Terminology and Functions

- (1) Status indicator LEDs (page 2 9) display the operating condition and error statuses.
- (2) Initialize/test switch (page 2 9) is used to clear the errors, initializes the operation memory and set the test operation.
- ③ Mode selector (page 2 10) is used to change the operation mode of the PLC.
- (4) COM port (RS232C) (page 2 11) is used to connect a computer or general–serial devices.
- **5 Tool port (RS232C)**

is used to connect a programming tool.

- (6) Input indicators (32 points) Indicate the input on/off states.
- ⑦ Selector for input indicators switch between the first 32 points and second 32 points of the 64 points input LED display.
- Input connectors CN1: X0 to X1F CN2: X20 to X3F
- Operation condition switches (page 2 10) are used to set the baud rate of the programming tool, to select the program memory and to select the activity of activity.

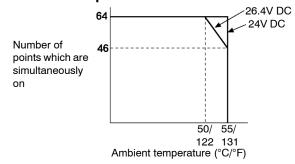
memory and to select the writing operation for the program memory.

🖛 next page

10 Memory backup battery

for backup of the internal memory (RAM). Part number: AFC8801 (CR2450 or equivalent)

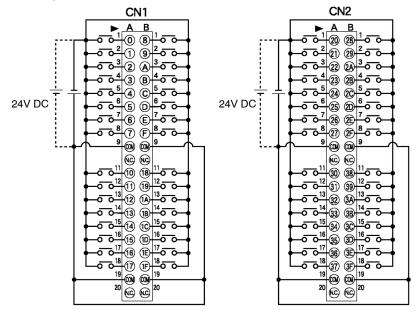
Note


The settings of the operation condition switches become active when the power is turned on.

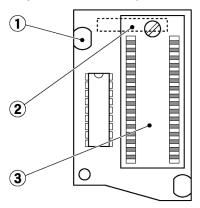
CPU with 64 Points Input Specifications

Item		Description	
Number of input point		64 points	
Insulation method		Optical coupler	
Rated input voltage		24V DC	
Rated input current		Approx. 4.3mA (at 24V DC)	
Input impedance		Approx. 5.6kΩ	
Input voltage range		20.4 to 26.4V DC	
Min. on voltage/Min. on curren	t	19.2V/4mA	
Max. off voltage/Max. off curre	nt	5.0V/1.5mA	
Response time	off \rightarrow on	0.2ms or less	
	on \rightarrow off	0.3ms or less	
Input points per common		32 points per common	
		(Either the positive or negative of the input power supply can be connected to common terminal.)	
Operating indicator		32-dot LED display (lit when on, switching)	
External connection method		Two 40-pin connectors	

i Note


Keep the number of input points which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

Internal Circuit Diagram


Pin Layout

The COM pins of each connector are connected internally.

2.3 Expansion Memory Unit and ROM (for FP2 CPU)

Expansion Memory Unit

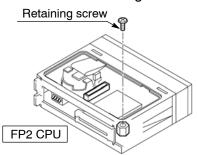
Parts Terminology

- **1** Mounting knob
- **2** Connector (rear side)
- (3) ROM IC socket (for FP2–EM3, FP2–EM6 and FP2–EM7) Install the optional memory FROM or EPROM.

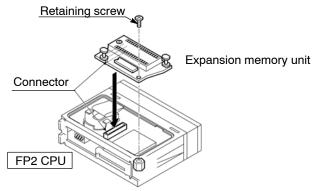
Type of Expansion Memory Unit

Item	Part numb	er		Description		
	FP2-EM1	FP2-EM2	FP2-EM3	FP2-EM6	FP2-EM7	
Comment input	Available	Available	Available	Not available	Not available	Writes the I/O comments, re- marks and block comments in
function (flash ROM)	1 128k byte 128k byte 512k byte		the program to the FP2 CPU.			
Calendar/ timer func- tion	Available	Available	Available	Not available	Not available	Allows operations using the cal- endar/timer function.
Expansion RAM	Not available	Available	Available	Available	Not available	Increases the program memory from approx. 16K to approx. 32K. Also enables use of the trace function.
ROM IC socket	Not available	Not available	Available	Available	Available	Enables the program to be co- pied to ROM for ROM opera- tion.

Type of ROM


Туре	Description	Part number
FROM	Equivalent to the 29EE010–120–4C–PH (SILICON STORAGE TECHNOLOGY, INC.). Enables writing with the operation of the programming tools when attached to the CPU.	FP2-EM4
EPROM	Equivalent to the M27C1001–12F1 (SGS-THOMSON MICROELECTRONICS). A commercially available ROM writer is required for writing.	FP2-EM5

2.3 Expansion Memory Unit and ROM (for FP2 CPU)


Installation Procedure

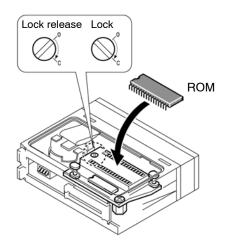
Installing the expansion memory unit Procedure:

- 1. Send the program and data to the personal computer using the programming tool software (NPST-GR or FPWIN GR).
- 2. Save the program and data to the disk.
- 3. Set the mode selector of the FP2 CPU to PROG.
- 4. Turn off the power supply and remove the FP2 CPU.
- 5. Remove the retaining screw.

- 6. Install the expansion memory unit.
- 7. Secure the expansion memory unit with the retaining screw.

- 8. Install the FP2 CPU to the backplane and turn on the power supply.
- 9. Perform a program clear using the programming tool software.
- 10. Send to the FP2 CPU the program and data saved in step 2 above.

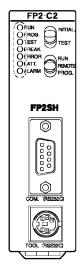
(For the FP2-EM2, FP2-EM3 and FP2-EM6, continue with the procedures below.)


- 11. At the "NPST Configuration" menu for NPST–GR or "Select PLC Type" menu for FPWIN GR of programming tool software, set the PLC type to FP2(32K).
- 12. Set the program capacity with system register 0.

2.3 Expansion Memory Unit and ROM (for FP2 CPU)

Installing the ROM

Procedure:

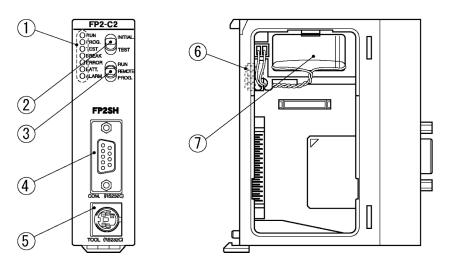

- 1. Release the lock for the ROM IC socket.
- 2. Make sure that the lead pitch of the ROM matches that of the socket.
- 3. Making sure that the orientation is correct, insert the ROM into the socket.
- 4. Return the lock to the locked position completely after the ROM is inserted.


Note

When removing or installing the expansion memory unit, the contents of the internal RAM may be erased. Therefore, always save the program onto a disk before beginning the removal and installation operations. During the installation or removal operations, do not touch the leads on any of the IC with your hands.

2.4 FP2SH CPU

Standard type CPU

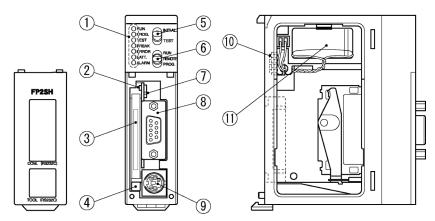

Small PC card compliant type CPU

Type of FP2SH CPU

Туре	Operation	Internal	Optional	memory		Function		Part number	Model number
	speed	RAM	Expansion RAM	ROM	IC card	Calendar/ timer	Comment memory		
32k steps Standard type CPU	From 0.03μs	32k steps	Not available	Available (Optional)	Not available	Available (Built-in)	Available (Built-in)	FP2-C2L	AFP2221
60k steps Standard type CPU		60k steps	Not available	Available (Optional)	Not available	Available (Built-in)	Available (Built-in)	FP2-C2	AFP2231
60k steps CPU with IC memory card interface		60k steps	Not available	Available (Built-in)	Available (Optional)	Available (Built-in)	Available (Built-in)	FP2-C2P	AFP2235
120k steps CPU with IC memory card inter- face		120k steps	Not available	Available (Built-in)	Available (Optional)	Available (Built-in)	Available (Built-in)	FP2-C3P	AFP2255

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

2.4.1 32k/60k Step Standard Type CPU (FP2-C2L/FP2-C2)


Parts Terminology and Functions

- (1) Status indicator LEDs (page 2 9) display the operating condition and error statuses.
- (2) Initialize/test switch (page 2 9) Setting the switch to the "INITIAL" side clears errors and initializes the operation memory. Setting the switch to the "TEST" side puts the PLC in the test operation mode.
- ③ Mode selector (r page 2 10) is used to change the operation mode of the PLC. This is used to switch between the RUN, REMOTE, and PROG. modes.
- ④ COM port (RS232C) (page 2 11) is used to connect a computer or general-serial devices.
- 5 Tool port (RS232C)

is used to connect a programming tool.

- (6) Operation condition switches (repage 2 21) are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.
- Memory backup battery for backup of the internal memory (RAM).
 Part number: AFC8801 (CR2450 or equivalent)

2.4.2 CPU with IC Memory Card Interface (FP2-C2P/FP2-C3P)

Parts Terminology and Functions

- Status indicator LEDs (page 2 9) display the operating condition and error statuses.
- IC memory card access LED
 Illuminates when data is being read from or written to the IC memory card.
- ③ IC memory card slot is used when installing an optional IC memory card.
- (4) **IC memory card eject button** Pressing this button ejects the IC memory card.
- (5) Initialize/test switch (➡ page 2 9)

Setting the switch to the "INITIAL" side clears errors and initializes the operation memory. Setting the switch to the "TEST" side puts the PLC in the test operation mode.

6 Mode selector (➡ page 2 - 10)

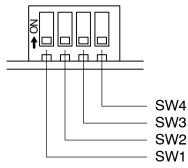
is used to change the operation mode of the PLC. This is used to switch between the RUN, REMOTE, and PROG. modes.

- (7) IC memory card access enable switch Setting this switch to the "on" (upward) side enables data to be read and written to the IC memory card.
- 8 COM port (RS232C) (page 2 11) is used to connect a computer or general-serial devices.

(9) Tool port (RS232C)

is used to connect a programming tool.

🖛 next page

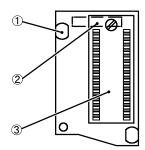

10 Operation condition switches

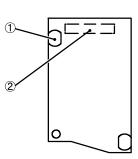
are used to set the baud rate of the programming tool, to select the program memory and to select the writing operation for the program memory.

(1) Memory backup battery

for backup of the internal memory (RAM). Part number: AFC8801 (CR2450 or equivalent)

Operation Condition Switches


Switch	Item	Switch position		
		off (factory setting)	on	
SW1	Baud rate for tool port	System register setting (Default value: 19,200bps)	9,600bps	
SW2	Program memory selection	Internal RAM	External memory	
SW3	Program memory protection	Write enabled	Write protected	
SW4	External memory selection	ROM	IC memory card	


2.5 Expansion Memory Unit and ROM (for FP2–C2L/FP2-C2)

Parts Terminology

AFP2207(FP2-EM7)

AFP2208

- (1) Mounting knob
- 2 Connector (rear side)
- **3 ROM IC socket**

Install the optional memory FROM or EPROM.

Type of Expansion Memory Unit

Туре	Function	Part number	Model number
Expansion	Socket for installing the ROM in the CPU	FP2-EM7	AFP2207
memory unit	Nonvolatile memory-implemented memory unit	—	AFP2208

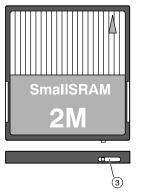
🔊 Note

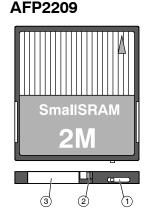
The FP2–EM1, FP2–EM2, FP2–EM3, and FP2–EM6 expansion memory units for the FP2 cannot be used. As for the memory unit AFP2208, the ROM is not removable.

Type of ROM

Туре	Function	Part number
FROM	Equivalent to the 29EE020–150–4C–PH (SILICON STORAGE TECHNOLOGY, INC.). Enables writing with the operation of the programming tools when attached to the CPU.	AFP5208
EPROM	Equivalent to the M27C2001–150F1 (SGS-THOMSON MICROELECTRONICS). A commercially available ROM writer is required for writing.	AFP5209

Installation Procedure


For detailed information about the installation of expansion memory unit 🖛 page 2 - 16


For detailed information about the installation of ROM 🖛 page 2 – 17

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

2.6 IC Memory Card (for FP2-C2P/FP2-C3P)

AIC50020, AIC52000

Parts and Functions

Write protect switch

Switch position		Purpose
	ON (right)	Read-only of the data
	OFF (left)	Write enable of the data

Lock switch

It fixes the battery holder.

Switch position		Purpose
	LOCK (right)	Lock position
	RELEASE (left)	Release position

Note) The lock switch is automatically back to the LOCK position from the RELEASE position when removing the battery holder.

Battery holder

A battery for memory backup is installed. (A battery is supplied with the product.) Product number for purchasing separately: AFP2806

Role of IC Memory Card

The IC memory card can be used as a memory to which programs can be saved and copied, or as an expanded memory to which data can be read and written in the program.

The IC memory card can be divided into two areas, a "format field" in which various programs are stored, and an "expanded memory field" used as a data memory.

Example:

A 2MB card can be formatted as 1 MB, with 1 MB being used as a "format field" and the remaining 1 MB being used as an "expanded memory field".

The entire field can be used as a "format field" or as an "expanded memory field", and the card used exclusively as a memory card for saving programs or data memory.

If the FROM section is specified as the "expanded memory field", the card can be used only for reading data.

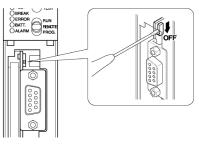
Types of IC Memory Cards

Туре	Memory	Part	Usage method	Recommended	
	capacity	number	When used to store programs	When used as expanded memory field	application points
FROM type	2 MB	AIC50020	Data is written to IC memory card using "Copy File to IC Card" of programming tool software.	Serves as dedicated memory for reading data. Data is written using pro- gramming tool software. Data is read from IC memory card using high-level instruc- tion F12 (ICRD) .	No battery back- up is required, so this is ideal for saving programs.
SRAM type SRAM type	2 MB	AFP2209 AIC52000 (Discon- tinued products)	Programs are written to IC memory card using "Down- load Program to IC Card" of programming tool software. Programs can be written from internal RAM to IC memory card using "ROM ← RAM" of programming tool software.	Writing of data to IC memory card is done using high-level instruction F13 (ICWT). Reading of data from IC memory card is done using high-level instruction F12 (ICRD).	Data can be read to and written from programs, so this is ideal for use as expansion data memory.

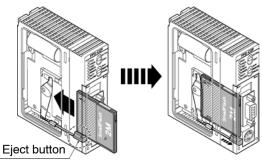
Notes

- Both the SRAM and FROM type can be divided into a "format field" and an "expanded memory field" for use.
- When using the card as a program memory, there are four ways to read programs:
 - Programs are read automatically when the power is turned on (IC memory card operation).
 - Programs are read using the "ROM → RAM" operation of programming tool software.
 - Programs are read using the "IC Card Service" of programming tool software.
 - Programs are read using the F14 (PGRD) instruction of the sequence program.

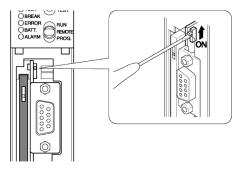
Inserting and Removing the IC Memory Card


The IC memory card can be inserted or removed even when the FP2SH power is on. To insert or remove the card when the power is on, be sure to follow the following procedure.

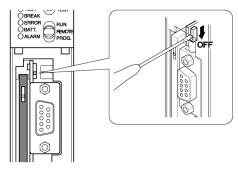
Inserting procedure:


1. Remove the cover of FP2SH CPU.

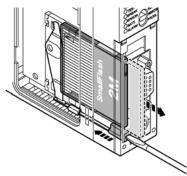
2. Set the IC memory card access enable switch to off position.


3. Insert the IC memory card.

i Note


When using AFP2209, confirm if the battery is installed in the IC memory card.

- 2.6 IC Memory Card (for FP2-C2P/FP2-C3P)
 - 4. Set the IC memory card access enable switch to on position.



Removal procedure:

1. Verify that the IC memory card access LED is off. Set the IC memory card access enable switch to off position.

2. Push the eject button and pull out the IC memory card.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Precautions when installing/removing the IC memory card

Do not try to insert and remove the IC memory card while the IC memory card access enable switch is on. It could lead to damage of the memory contents or a malfunction of CPU.

Do not use excessive force to the card or the section where card is installed.

Battery of the SRAM type IC memory card

AIC52000

A rechargeable battery is used. It cannot be exchanged.

AFP2209

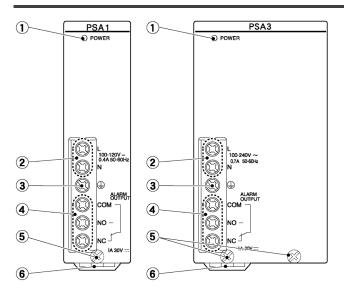
An interchangeable battery is used. When you use for the first time, install the battery included.

Note

If the battery voltage has dropped, the ERROR LED lights, and error code K55 or K54 is stored in special data register DT90000. Error codes can be confirmed using programming tools.

- K54 -- The data on the IC memory card is not retained.
- K55 -- The data on the IC memory card is guaranteed, but the voltage of the internal battery has dropped.
- *AIC52000: Power should continue to be supplied to the unit in order to charge it.
- *AFP2209: The replacement of memory backup battery is neces sary. As the data saved in AFP2209 is overwritten when replacing the battery, the data must be backed up before the replacement.

Write protection of IC memory card


There is a write protect switch on the IC memory card. To prohibit writing to the IC memory card, set this switch to "Write protect" position.

To write the program or data to the IC memory card, set the write protect switch to off position.

2.7 Power Supply Units

2.7 Power Supply Units

2.7.1 Power Supply Specifications

Parts Terminology and Functions

1 POWER LED

Turns on when power is applied.

2 Power supply terminal

is the terminal for power supply wiring. Uses M3 crimping (pressure connection) terminals (resting 4.2.1).

3 Ground terminal

To minimize effects from noise and prevent electrical shocks, connect this terminal to ground.

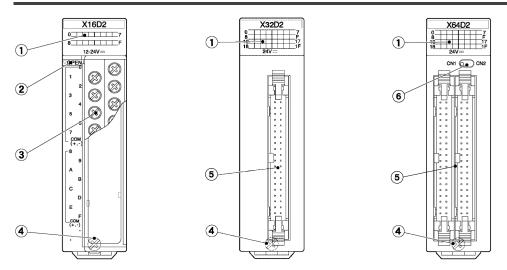
4 Alarm output terminal

Contact output terminals of the relay which turns on when the ALARM LED of the CPU turns on. Normally closed contact (N.C.) and normally open contact (N.O.) are available.

5 Unit installation screw

(6) Temporary holding hook

Specifications


Item		Description					
Part numb	ber	FP2-PSA1	FP2-PSA2	FP2-PSA3	FP2-PSD2		
Size of un	it	1-module		2-module	•		
Input	Rated voltage	100 to 120V AC	200 to 240V AC	100 to 240V AC	24V DC		
	Current consumption	0.4A or less (at 100V AC)	0.2A or less (at 200V AC)	0.7A or less (at 100V AC)	2.5A or less		
				0.4A or less (at 200V AC)			
	Surge current	40A or less		30A or less (at 25°C/77°F)	10A or less		
	Rated frequency	50Hz/60Hz			—		
	Operating voltage range	85 to 132V AC	170 to 264V AC	85 to 264V AC	20.4 to 31.2V DC (*1)		
Output	Output capacity at 5V	Max. 2.5A		Max. 5A	Max. 5A		
Alarm con	tact capacity	30V DC 1A					
Alarm con	itact operation	When the ALARM LED of CPU is lit					
Alarm con	itact type	1c contact					
Leakage c	urrent	Between input and ground terminals, 0.75mA or less					
Breakdown voltage		1500V AC for 1 minutes 500V AC for 1 minutes (between input and ground terminals) 500V AC for 1 minutes (between input and ground terminals)					
Insulation	resistance	100M Ω 500V DC (between input and ground terminals)					
Guarantee	ed lifetime	20000 hours at 55°C/131°F					
Overcurre	nt protection function	Built-in overcurrent protection					
Fuse		Built-in					
Terminal s	screw	M3					

*1 The allowable variation in voltage after startup is 15.6V to 31.2V.

2.8 Input and Output Units

2.8 Input and Output Units

2.8.1 Common Specifications of Input and Output Units

Parts Terminology and Functions

(1) Input and output indicators

Indicate the input and output on/off states.

2 Terminal block release lever

By lowering this lever, the terminal block can be removed from the unit without removing any of the wiring. After installation, push in the lock button at the bottom of the unit to lock in the terminal block.

③ Terminal block

This is the terminal block for the inputs, outputs, and power supplies. This terminal block uses M3 sized crimping (pressure connection) terminals. For more information regarding the crimping (pressure connection) terminals, refer to section 4.5.1.

4 Unit installation screw

Secures the unit to the backplane.

5 Connector

This is the connector for input/output and power supply wiring. This allows the connector of discrete-wire and the connector of flat cable. For more information regarding the suitable connectors, refer to section 4.4.1.

For terminal connection, an exclusive cable is available. For more information, refer to section 4.4.3.

6 Indicator selection switch

Switches between the first 32 points (CN1 position) and second 32 points (CN2 position) of the LED display for the 64-point type unit.

2 – 30

Туре	Number of points	Connection method	Description	Part number
DC input type	16 points	Terminal block	12 to 24V DC, sink/source input	FP2-X16D2
	32 points	Connector	24V DC, sink/source input	FP2-X32D2
	64 points	Connector	24V DC, sink/source input	FP2-X64D2

Table of Input Unit Types

Table of Output Unit Types

Туре	Number of points	Connection method	Description	Part number
Relay output type	6 points	Terminal block	5A, Without relay sockets	FP2-Y6R
	16 points	Terminal block	2A, Without relay sockets	FP2-Y16R
Transistor	16 points	Terminal block	5 to 24V DC, 0.5A	FP2-Y16T
(NPN open collector)	32 points	Connector	5 to 24V DC, 0.1A	FP2-Y32T
output type	64 points	Connector	5 to 24V DC, 0.1A	FP2-Y64T
Transistor	16 points	Terminal block	5 to 24V DC, 0.5A	FP2-Y16P
(PNP open collector)	32 points	Connector	5 to 24V DC, 0.1A	FP2-Y32P
output type	64 points	Connector	5 to 24V DC, 0.1A	FP2-Y64P

The maximum load current for the transistor output type output unit will differ depending on the operating voltage. Refer to the specifications pages for each unit.

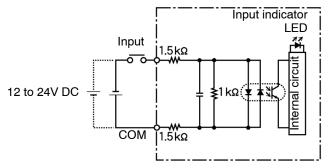
2.8 Input and Output Units

Туре	Number of points	Connection method	Description	Part number
DC input/transistor (NPN open collector) output type	32 input points/ 32 output points	Connector	24V DC, sink/source input, 5 to 24V DC, 0.1A	FP2-XY64D2T
DC input/transistor (PNP open collector) output type	32 input points/ 32 output points	Connector	24V DC, sink/source input, 5 to 24V DC, 0.1A	FP2-XY64D2P
DC input with on pulse catch input function/transis- tor (NPN open collector) output type	32 input points/ 32 output points	Connector	24V DC, sink/source input, 5 to 24V DC, 0.1A	FP2-XY64D7T
DC input with on pulse catch input function/transis- tor (PNP open collector) output type	32 input points/ 32 output points	Connector	24V DC, sink/source input, 5 to 24V DC, 0.1A	FP2-XY64D7P

Table of I/O Mixed Unit Types

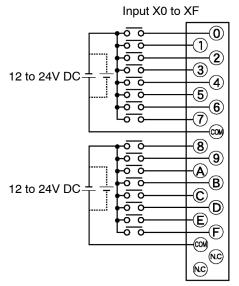
• The maximum load current value will differ depending on the operating voltage. Refer to the specifications page for each unit.

 For types with the on pulse catch input, the four points X1C through X1F of the 32 input points possess the on pulse catch input function. (
 section 2.11.5)


2.9 Input Units Specifications

2.9.1 16-point Type DC Input Unit

Specifications

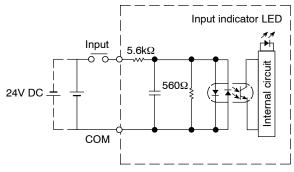

Item		Description
Part number		FP2-X16D2
Insulation method		Optical coupler
Rated input voltage		12 to 24V DC
Rated input current		Approx. 8mA (at 24V DC)
Input impedance		Approx. 3kΩ
Input voltage range		10.2 to 26.4V DC (Max. input current: 10mA or less)
Min. on voltage/Min. on curren	t	9.6V/4mA
Max. off voltage/Max. off curre	nt	2.5V/1mA
Response time	off \rightarrow on	0.2ms or less
	on \rightarrow off	0.2ms or less
Internal current consumption ((at 5V DC)	60mA or less
Common method (Input points	per common)	8 points/common
		Either the positive or negative of the input power supply can be connected to common terminal.
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 140g

Internal Circuit Diagram

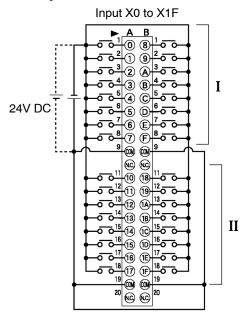
2.9 Input Units Specifications

Pin Layout

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.


2.9 Input Units Specifications

2.9.2 32-point Type DC Input Unit

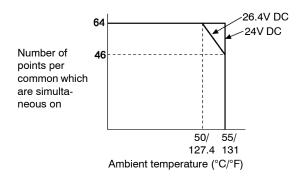

Specifications

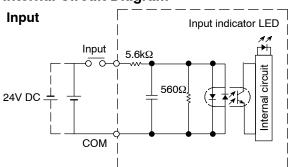
Item		Description
Part number		FP2-X32D2
Insulation method		Optical coupler
Rated input voltage		24V DC
Rated input current		Approx. 4.3mA (at 24V DC)
Input impedance		Approx. 5.6kΩ
Input voltage range		20.4 to 26.4V DC
Min. on voltage/Min. on curren	t	19.2V/4mA
Max. off voltage/Max. off curre	nt	5.0V/1.5mA
Response time	off \rightarrow on	0.2ms or less
	on \rightarrow off	0.3ms or less
Internal current consumption	(at 5V DC)	80mA or less
Common method (Input points	per common)	32 points/common
		Either the positive or negative of the input power supply can be connected to common terminal.
Operating indicator		32-dot LED display (lit when on)
External connection method		Connectors (MIL type 40-pin)
Weight		Approx. 100g

Internal Circuit Diagram

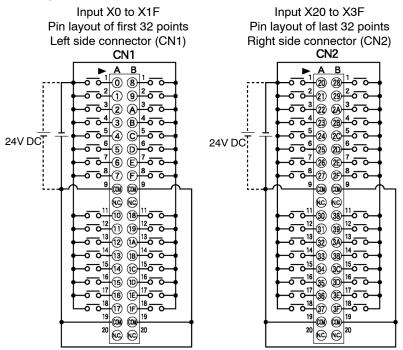
Pin Layout

2.9 Input Units Specifications


64-point Type DC Input Unit 2.9.3


Specifications

Item		Description
Part number		FP2-X64D2
Insulation method		Optical coupler
Rated input voltage		24V DC
Rated input current		Approx. 4.3mA (at 24V DC)
Input impedance		Approx. 5.6kΩ
Input voltage range		20.4 to 26.4V DC
Min. on voltage/Min. on curren	t	19.2V/4mA
Max. off voltage/Max. off curre	nt	5.0V/1.5mA
Response time	off \rightarrow on	0.2ms or less
	on \rightarrow off	0.3ms or less
Internal current consumption	(at 5V DC)	100mA or less
Common method (Input points	per common)	32 points/common
		Either the positive or negative of the input power supply can be connected to common terminal.
Operating indicator		32-dot LED display (lit when on, switching)
External connection method		Connectors (MIL type two 40-pin)
Weight		Approx. 120g


Keep the number of input points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

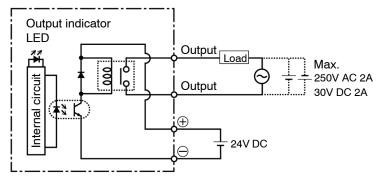
Internal Circuit Diagram

Pin Layout

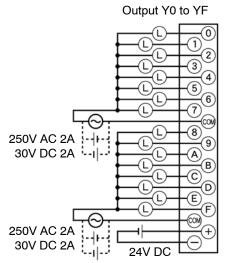
The COM pins of each connector are connected internally.

For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

2.10 Output Units Specifications


2.10 Output Units Specifications

2.10.1 16-point Type Relay Output Unit


Specifications

Item		Description
Part number		FP2-Y16R
Insulation method		Optical coupler
Rated control capacity		2A 250V AC (5A/common), 2A 30V DC (5A/common) Min. Ioad: 100μA, 100mV (resistor load)
Response time	off \rightarrow on	10ms or less
	on \rightarrow off	8ms or less
Life time	Mechanical	20,000,000 operations or more
	Electrical	100, 000 operations or more
Internal current consumption (at 5V DC)		120mA or less
Power supply for driving	Voltage	24V DC ± 10% (21.6 to 26.4V DC)
internal circuit	Current	160mA or less
Surge absorber		None
Relay socket		None
Common method (Output points per common)		8 points/common
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 190g

Internal Circuit Diagram

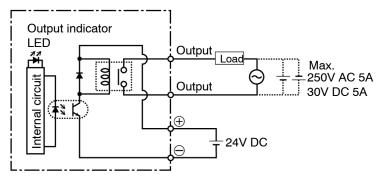
Pin Layout

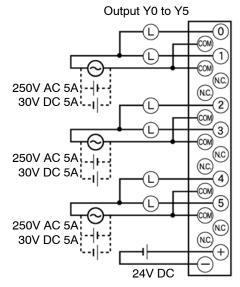
For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.10 Output Units Specifications

2.10.2 6-point Type Relay Output Unit

Specifications

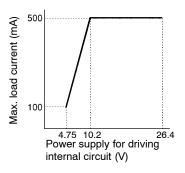

Item		Description
Part number		FP2-Y6R
Insulation method		Optical coupler
Rated control capacity		5A 250V AC (10A/common), 5A 30V DC (10A/common)(* Note) Min. load: 100mA, 10V (resistor load)
Response time	off \rightarrow on	10ms or less
	on \rightarrow off	8ms or less
Life time	Mechanical	20,000,000 operations or more
	Electrical	100, 000 operations or more
Internal current consumption (at 5V DC)		50mA or less
Power supply for driving	Voltage	24V DC ± 10% (21.6 to 26.4V DC)
internal circuit	Current	70mA or less
Surge absorber		None
Relay socket		None
Common method (Output points per common)		2 points/common
Operating indicator		6-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 170g


For each common 1 pin, use at a current capacity of 5A or less.

2.10 Output Units Specifications

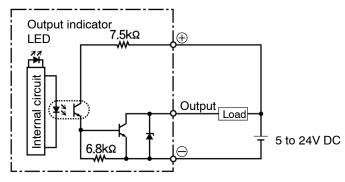
Internal Circuit Diagram

For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

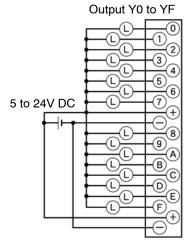

16-point Type Transistor (NPN) Output Unit 2.10.3

Specifications

Item		Description
Part number		FP2-Y16T
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.5A (at 12 to 24V DC), 0.1A (at 5V DC) (* Note)
Maximum surge current		3A, 10ms or less
Off state leakage current		1μA or less
On state maximum voltage	e drop	0.5V or less
Response time	off \rightarrow on	0.1ms or less
	on \rightarrow off	0.3ms or less
Internal current consumpt (at 5V DC)	lion	100mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC (* Note)
internal circuit	Current	120mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		8 points/common
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 150g



The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

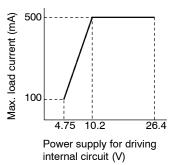


2.10 Output Units Specifications

Internal Circuit Diagram

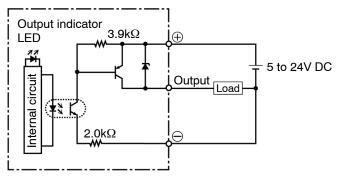
For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.

2.10 **Output Units Specifications**

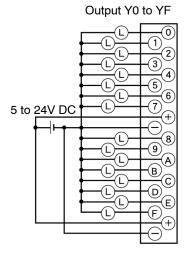

16-point Type Transistor (PNP) Output Unit 2.10.4

Specifications

Item		Description
Part number		FP2-Y16P
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.5A (at 12 to 24V DC), 0.1 A (at 5V DC) (* Note)
Maximum surge current		3A, 10ms or less
Off state leakage current		1μA or less
On state maximum voltage	e drop	0.5V or less
Response time	off \rightarrow on	0.1ms or less
	on \rightarrow off	0.3ms or less
Internal current consumption (at 5V DC)		80mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC (* Note)
internal circuit	Current	70mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		8 points/common
Operating indicator		16-dot LED display (lit when on)
External connection method		Terminal block (M 3 screw)
Weight		Approx. 150g



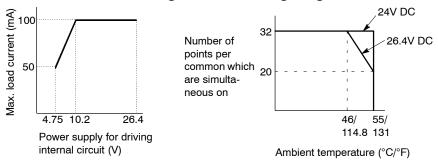
The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.



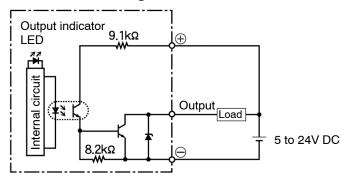
2.10 Output Units Specifications

Internal Circuit Diagram

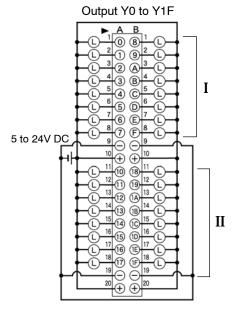
For more information regarding the applicable pressure connection (crimp) terminals and wiring, refer to section 4.5.1.


2.10.5 32-point Type Transistor (NPN) Output Unit

Specifications


Item		Description
Part number		FP2-Y32T
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.1A (at 12 to 26.4V DC) , 50mA (at 5V DC) (* Note)
Maximum surge current		0.3A
off state leakage current		1μA or less
on state maximum voltage	e drop	1V or less (at 6 to 26.4V DC), 0.5V or less (at 6V DC or less)
Response time	off \rightarrow on	0.1ms or less
	on \rightarrow off	0.3ms or less
Internal current consumpt (at 5V DC)	lion	130mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC
internal circuit	Current	140mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		32 points/common
Operating indicator		32-dot LED display (lit when on)
External connection meth	od	Connector (MIL type 40-pin)
Weight		Approx. 100g

🔊 Note


The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.

Internal Circuit Diagram

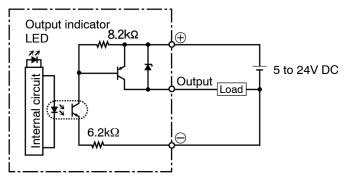
Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.

For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

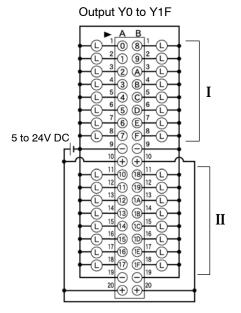
2.10.6 32-point Type Transistor (PNP) Output Unit


Specifications

Item		Description
Part number		FP2-Y32P
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.1A (at 12 to 26.4V DC), 50mA (at 5V DC) (* Note)
Maximum surge current		0.3A
off state leakage current		1μA or less
on state maximum voltage	e drop	1.5V or less (at 6 to 26.4V DC),
		0.5V or less (at 6V DC or less)
Response time	off \rightarrow on	0.1ms or less
	on \rightarrow off	0.3ms or less
Internal current consumpt (at 5V DC)	ion	130mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC
internal circuit	Current	150mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		32 points/common
Operating indicator		32-dot LED display (lit when on)
External connection method		Connectors (MIL type 40-pin)
Weight		Approx. 100g


🔊 Note

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.



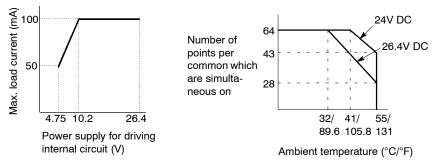
2.10 Output Units Specifications

Internal Circuit Diagram

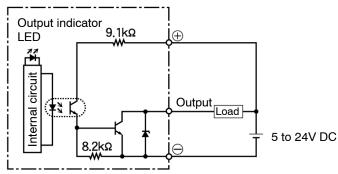
Pin Layout

Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.

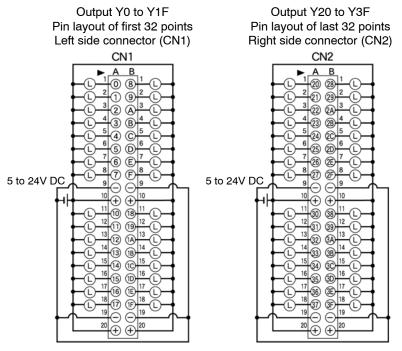
For more information regarding the applicable connectors and terminals, refer to section 4.4.1.


2.10.7 64-point Type Transistor (NPN) Output Unit

Specifications


Item		Description	
Part number		FP2-Y64T	
Insulation method		Optical coupler	
Rated load voltage		5 to 24V DC	
Load voltage range		4.75 to 26.4V DC	
Maximum load current		0.1A (at 12 to 24V DC), 50mA (at 5V DC) (* Note)	
Maximum surge current		0.3A	
Off state leakage current		1μA or less	
On state maximum voltage	e drop	1V or less (at 6 to 26.4V DC), 0.5V or less (at 6V DC or less)	
Response time	off \rightarrow on	0.1ms or less	
	on \rightarrow off	0.3ms or less	
Internal current consumption (at 5V DC)		210mA or less	
Power supply for driving	Voltage	4.75 to 26.4V DC	
internal circuit	Current	250mA or less (at 24V DC)	
Surge absorber		Zener diode	
Fuse ratings		None	
Common method (Output points per common)		32 points/common	
Operating indicator		32-dot LED display (lit when on, switching)	
External connection methe	od	Connector (MIL type two 40-pin)	
Weight		Approx. 120g	

🔊 Note

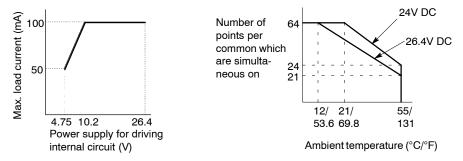

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.

Internal Circuit Diagram

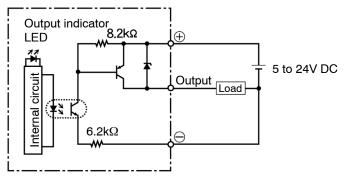
Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.

For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

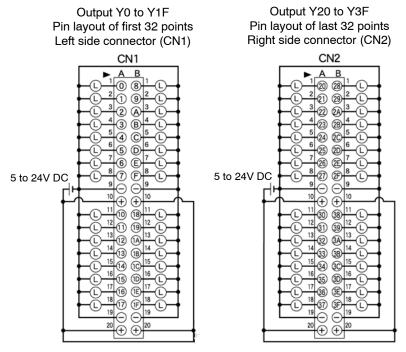
2.10.8 64-point Type Transistor (PNP) Output Unit


Specifications

Item		Description
Part number		FP2-Y64P
Insulation method		Optical coupler
Rated load voltage		5 to 24V DC
Load voltage range		4.75 to 26.4V DC
Maximum load current		0.1A (at 12 to 24V DC), 50mA (at 5V DC) (* Note)
Maximum surge current		0.3A
Off state leakage current		1μA or less
On state maximum voltage	e drop	1.5V or less (at 6 to 26.4V DC),
		0.5V or less (at 6V DC or less)
Response time	off \rightarrow on	0.1ms or less
	on \rightarrow off	0.3ms or less
Internal current consumpt (at 5V DC)	ion	210mA or less
Power supply for driving	Voltage	4.75 to 26.4V DC
internal circuit	Current	270mA or less (at 24V DC)
Surge absorber		Zener diode
Fuse ratings		None
Common method (Output points per common)		32 points/common
Operating indicator		32-dot LED display (lit when on, switching)
External connection methe	od	Connectors (MIL type two 40-pin)
Weight		Approx. 120g


🔊 Note

The load current will vary depending on the power supply for driving the internal circuit and the ambient temperature. Adjust the load current referring to the following range.



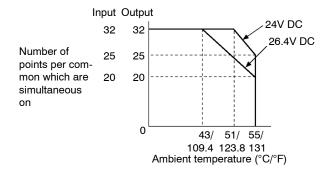
2.10 Output Units Specifications

Internal Circuit Diagram

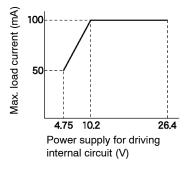
Pin Layout

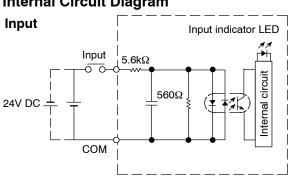
Although \oplus and \ominus terminals are connected internally with the same connector. It is recommended that they also be connected externally.

For more information regarding the applicable connectors and terminals, refer to section 4.4.1.

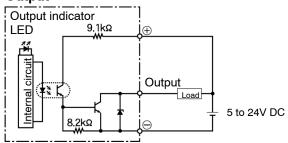

2.11.1 32-point Type DC Input/32-point Type Transistor (NPN) Output Unit

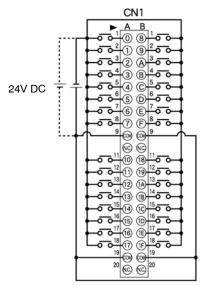
Specifications


Item			Description
Part number			FP2-XY64D2T
Input specifica-	Insulation method		Optical coupler
tions	Rated input voltage)	24V DC
	Rated input current	t	Approx. 4.3mA (at 24V DC)
	Input impedance		Approx. 5.6kΩ
	Input voltage range	•	20.4 to 26.4V DC
	Min. on voltage/Mir	n. on current	19.2V/4mA
	Max. off voltage/Ma	x. off current	5.0V/1.5mA
	Response time	off \rightarrow on	0.2ms or less
		on \rightarrow off	0.3ms or less
	Common method (I	nput points	32 points/common
	per common)		Either the positive or negative of the input power supply can be connected to common terminal.
Output specifica-	Insulation method		Optical coupler
tions	Rated load voltage		5 to 24V DC
	Load voltage range	1	4.75 to 26.4V DC
	Maximum load current Maximum surge current Off state leakage current On state maximum voltage drop		0.1A (at 12 to 24V DC), 50mA (at 5V DC) (* Note)
			0.3A
			1μA or less
			1V or less (at 6 to 26.4V DC), 0.5V or less (at 6V DC or less)
	Response time	off \rightarrow on	0.1ms or less
		on \rightarrow off	0.3ms or less
	Power supply for	Voltage	4.75 to 26.4V DC
	driving internal circuit	Current	120mA or less (at 24V DC)
	Surge absorber		Zener diode
	Fuse ratings Common method (Output points per common)		None
			32 points/common
Common specifi- cations	- Internal current consumption (at 5V DC) Operating indicator External connection method		150mA or less
			32-dot LED display (lit when on, switching)
			Connector (two 40-pin)
	Weight		Approx. 120g

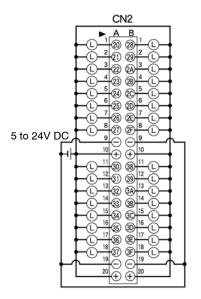

🔊 Notes

• Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.


 The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.



Internal Circuit Diagram

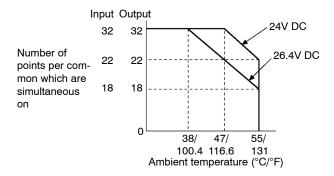

Output

Pin Layout

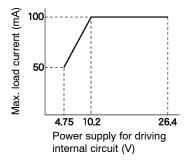
The COM pins of each connector are connected internally.

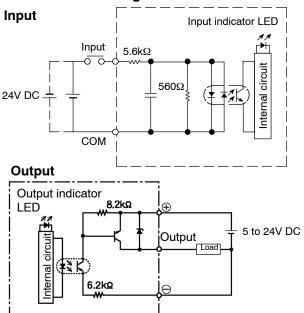
Although "+" and "-" terminals are connected internally with the same connector. It is recommended that they also be connected externally.

2.11.2 32-point Type DC Input/32-point Type Transistor (PNP) Output Unit

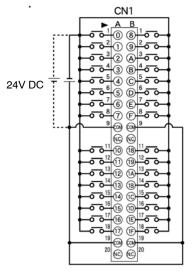

Specifications

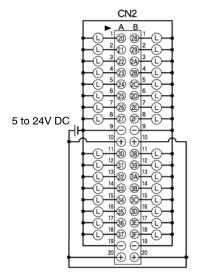
Item			Description
Part number			FP2-XY64D2P
Input specifica- tions	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input current		Approx. 4.3mA (at 24V DC)
	Input impedance		Approx. 5.6kΩ
	Input voltage range		20.4 to 26.4V DC
	Min. on voltage/ Min. on current		19.2V/4mA
	Max. off voltage/ Max. off current		5.0V/1.5mA
	Response time	off \rightarrow on	0.2ms or less
		on \rightarrow off	0.3ms or less
	Common method (I	nput points	32 points/common
	per common)		Either the positive or negative of the input power supply can be connected to common terminal.
Output specifica-	Insulation method		Optical coupler
tions	Rated load voltage		5 to 24V DC
	Load voltage range		4.75 to 26.4V DC
	Maximum load current		0.1A (at 12 to 24V DC), 50mA (at 5V DC) (* Note)
	Maximum surge current		0.3A
	Off state leakage current		1μA or less
	On state maximum voltage drop		1.5V or less (at 6 to 26.4V DC), 0.5V or less (at 6V DC or less)
	Response time	off \rightarrow on	0.1ms or less
		on \rightarrow off	0.3ms or less
	Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC
		Current	130mA or less (at 24V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method (Output points per common)		32 points/common
Common specifications	Internal current consumption (at 5V DC)		150mA or less
	Operating indicator		32-dot LED display (lit when on, switching)
	External Connection method		Connector (two 40-pin)
	Weight		Approx. 120g


🖛 next page


i Notes

• Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.


• The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.

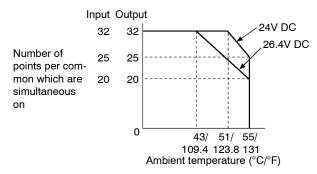


Internal Circuit Diagram

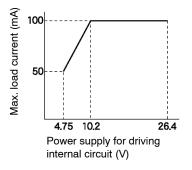
Pin Layout

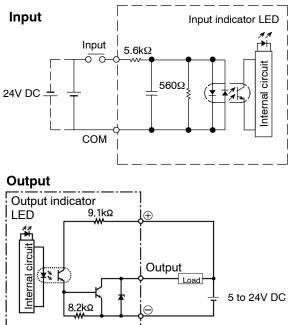
The COM pins of each connector are connected internally.

Although "+" and "-" terminals are connected internally with the same connector. It is recommended that they also be connected externally.


2.11.3 32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (NPN) Unit

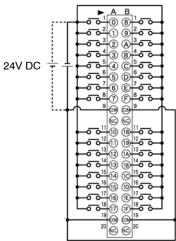
Specifications

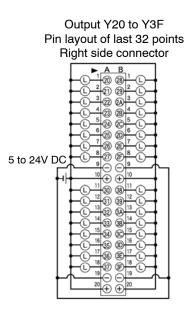

Item			Description
Part number			FP2-XY64D7T
Input specifica- tions	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input current		Approx. 4.3mA (at 24V DC)
	Input impedance		Approx. 5.6k Ω
	Input voltage range		20.4 to 26.4V DC
	Min. on voltage/ Min. on current		19.2V/4mA
	Max. off voltage/ Max. off current		5.0V/1.5mA
	Response time	off \rightarrow on	0.2ms or less (for X0 to X1F)
		on → off	0.3ms or less (for X0 to X1B) 1.0 to 5.0ms (X1C to X1F)
	Common method (Input points per common)		32 points/common
			Either the positive or negative of the input power supply can be connected to common terminal.
Output specifica-	Insulation method		Optical coupler
tions	Rated load voltage		5 to 24V DC
	Load voltage range		4.75 to 26.4V DC
	Maximum load current		0.1A (at 12 to 24V DC), 50mA (at 5V DC)(* Note)
	Maximum surge current		0.3A
	Off state leakage current		1μA or less
	On state maximum voltage drop		1V or less (at 6 to 26.4V DC), 0.5V or less (at 6V DC or less)
	Response time	off \rightarrow on	0.1ms or less
		on \rightarrow off	0.3ms or less
	Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC
		Current	120mA or less (at 24V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method (Output points per common)		32 points/common
Common specifications	Internal current consumption (at 5V DC)		150mA or less
	Operating indicator		32-dot LED display (lit when on, switching)
	External connection method		Connector (two 40-pin)
	Weight		Approx. 120g


i Notes

- With a periodical interrupt function (1 ms), it is possible to read an on pulse input signal with a minimum pulse width of 0.4 ms. For detailed information about the on pulse catch input function respective section 2.11.5
- Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

• The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.




Internal Circuit Diagram

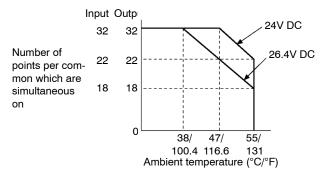
Pin Layout

Input X0 to X1F Pin layout of first 32 points Left side connector

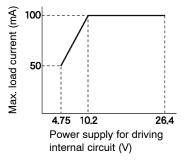
The COM pins of each connector are connected internally.

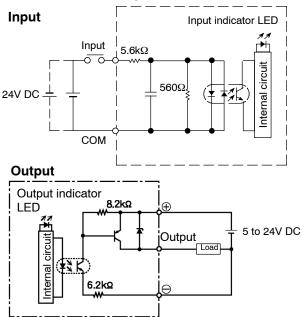
Although "+" and "-" terminals are connected internally with the same connector. It is recommended that they also be connected externally.

2.11.4 32-point Type DC Input with On Pulse Catch Input Function/ 32-point Type Transistor Output (PNP) Unit

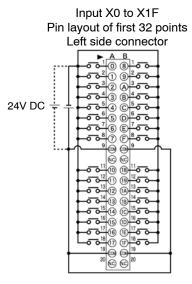

Specifications

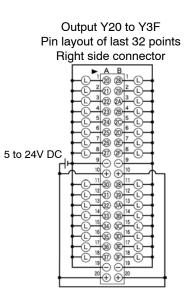
Item			Description
Part number			FP2-XY64D7P
Input specifica- tions	Insulation method		Optical coupler
	Rated input voltage		24V DC
	Rated input current		Approx. 4.3mA (at 24V DC)
	Input impedance		Approx. 5.6k Ω
	Input voltage range		20.4 to 26.4V DC
	Min. on voltage/ Min. on current		19.2V/4mA
	Max. off voltage/ Max. off current		5.0V/1.5mA
	Response time	off \rightarrow on	0.2ms or less (for X0 to X1F)
		on → off	0.3ms or less (for X0 to X1B) 1.0 to 5.0ms (for X1C to X1F)
	Common method (Input points per common)		32 points/common
			Either the positive or negative of the input power supply can be connected to common terminal.
Output specifica-	Insulation method		Optical coupler
tions	Rated load voltage		5 to 24V DC
	Load voltage range		4.75 to 26.4V DC
	Maximum load current		0.1A (at 12 to 24V DC), 50mA (at 5V DC)(* Note)
	Maximum surge current		0.3A
	Off state leakage current		1μA or less
	On state maximum voltage drop		1.5V or less (at 6 to 26.4V DC) 0.5V or less (at 6V DC or less)
	Response time	off \rightarrow on	0.1ms or less
		on \rightarrow off	0.3ms or less
	Power supply for driving internal circuit	Voltage	4.75 to 26.4V DC
		Current	130mA or less (at 24V DC)
	Surge absorber		Zener diode
	Fuse ratings		None
	Common method (Output points per common)		32 points/common
Common specifications	Internal current consumption (at 5V DC)		150mA or less
	Operating indicator		32-dot LED display (lit when on, switching)
	External connection method		Connector (two 40-pin)
	Weight		Approx. 120g


next page


i Notes

- With a periodical interrupt function (1ms), it is possible to read an on pulse input signal with a minimum pulse width of 0.4ms. For detailed information about the on pulse catch input function resolution 2.11.5
- Keep the number of input and output points per common which are simultaneously on within the following range as determined by the input voltage and ambient temperature.

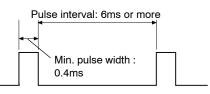

• The load current will vary depending on the power supply for driving the internal circuit. Adjust the load current referring to the following range.



Internal Circuit Diagram

Pin Layout

The COM pins of each connector are connected internally.


Although "+" and "-" terminals are connected internally with the same connector. It is recommended that they also be connected externally.

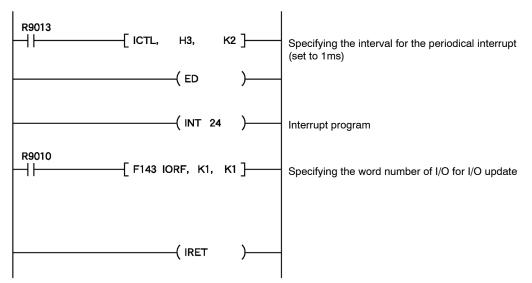
2.11.5 On Pulse Catch Input Function

The I/O mixed unit (FP2–XY64D7T/FP2–XY64D7P) is equipped with "On pulse catch input" function. The on pulse catch input function has a delay circuit built into the input and is used in combination with a periodical interrupt function to make possible the reading of on pulses with extremely small widths.

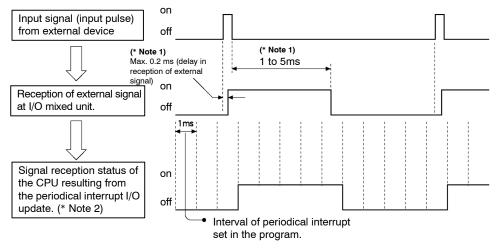
Readable pulse signals

Minimum pulse width: 0.4ms Pulse interval: 6ms or more

Method


In the program, specify the interval of periodical interrupt and the word number of I/O.

Considerations


The interval for the periodical interrupt is determined by the interrupt control instruction. Specify the pulse catch I/O (input) with the **ICTL** and **F143 (IORF)** instructions.

Program example

When an I/O mixed unit with on pulse catch input function is installed to slot "0" of the backplane.

Operation of pulse catch

- Reception of external signal at the I/O mixed unit. Within 0.2ms of the leading edge of the external signal, the I/O mixed unit will go on. This on status will be held for 1 to 5ms (the length of time the status is held will depend on the unit).
- 2) Reception of input at CPU that is executing a periodical interrupt.

The signal from the I/O mixed unit is read by the periodical interrupt.

I/O Allocation

3.1 Fundamentals of I/O Allocation

3.1.1 I/O Allocation and Registering

I/O allocation is the process of assigning an I/O number to each unit. Registering refers to registering the I/O allocations in the system register of the CPU.

3.1.1.1 Types of I/O Allocation Methods

There are 3 types of allocation methods: I/O mount allocation, arbitrary allocation, and automatic allocation.

I/O mount allocation

Using the programming tool software (NPST-GR/FPWIN GR), the allocation condition of the mounted units is recorded, as is, to the system register of the CPU.

Arbitrary allocation

The programming tool software (NPST-GR/FPWIN GR) is used to create I/O allocations and register them in the system register of the CPU. In this case, no deviations in I/O numbers will occur if a unit mounting error was made.

Automatic allocation

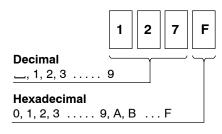
If units are installed, allocation will take place when the power is turned on based on the states of the installed units.

Automatic allocation only assigns I/O numbers to mounted units. It does not register the allocations.

3.1.1.2 Precautions Regarding Registering of I/O Allocation

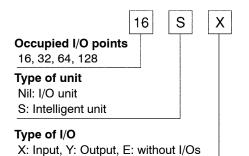
If registering is not performed when using arbitrary allocation:

Automatic allocation will be performed, and allocation will be based on the state of the installed units.


If I/O registration has already been performed:

If the registered information is different from the actual state of installation, such as when a unit is changed to a different type or the installation position is changed, normal operation will not take place. In this case, perform registration once again. 3.1 Fundamentals of I/O Allocation

3.1.1.3 How to Count the I/O Numbers and Express the Occupied Points


How to count the I/O numbers (relay numbers)

Since I/O number are handled in units of 16 points, they are expressed as a combination of decimal and hexadecimal numbers as shown below.

How to express the occupied points

In the programming tool and this manual, the occupied points are expressed in the following fashion for convenience.

Name		Part number	Occupied I/O point	Number of occupied slot
CPU	Standard type CPU	FP2-C1	-	1
	CPU with 64 points input	FP2-C1D	64X	2
	CPU with S-LINK	FP2-C1SL	(* Note 1)	2 (* Note 2)
FP2SH CPU	FP2-C2L	AFP2221	-	1
	FP2-C2	AFP2231	-	1
	FP2-C2P	AFP2235	-	1
	FP2-C3P	AFP2255	-	1
Remote I/O Sla	ve Unit	FP2-RMS	-	1
Input unit	16-point type DC input	FP2-X16D2	16X	1
	32-point type DC input	FP2-X32D2	32X	1
	64-point type DC input	FP2-X64D2	64X	1
Output unit	16-point type relay output	FP2-Y16R	16Y	1
	6-point type relay output	FP2-Y6R	16Y	1
	16-point type transistor (NPN) output	FP2-Y16T	16Y	1
	16-point type transistor (PNP) output	FP2-Y16P	16Y	1
	32-point type transistor (NPN) output	FP2-Y32T	32Y	1
	32-point type transistor (PNP) output	FP2-Y32P	32Y	1
	64-point type transistor (NPN) output	FP2-Y64T	64Y	1
	64-point type transistor (PNP) output	FP2-Y64P	64Y	1
I/O mixed unit	32-point type DC input/32-point type transistor (NPN) output	FP2-XY64D2T FP2-XY64D7T	32X, 32Y	1
	32-point type DC input/32-point type transistor (PNP) output	FP2–XY64D2P FP2–XY64D7P	32X, 32Y	1

🖛 next page

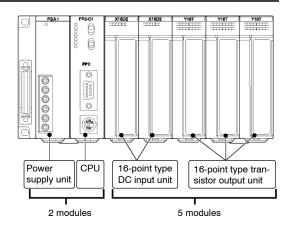
3.1 Fundamentals of I/O Allocation

Name		Part number		Occupied I/O point	Number of occupied slot	
Intelligent unit	Analog input unit	FP2-AD8VI, FP2-AD8	X, FP2-RTD	128SX	1	
	Analog output unit	FP2-DA4		64SY	1	
	High-speed counter unit	FP2-HSCT	FP2-HSCT		1	
		FP2-HSCP	FP2-HSCP			
	Pulse I/O unit	FP2-PXYT		32SX, 32SY	1	
		FP2–PXYP				
	Positioning unit (2-axis type)	FP2-PP2		32SX, 32SY	1	
	Positioning unit (4-axis type)	FP2-PP4		64SX, 64SY	1	
	Positioning unit (Multifunction	Transistor output type	FP2-PP21	32SX, 32SY	1	
	type) 2–axis type	Line driver output type	FP2-PP22			
	Positioning unit (Multifunction	Transistor output type	FP2-PP41	64SX, 64SY	1	
	type) 4-axis type	Line driver output type	FP2-PP42			
	Positioning unit RTEX (2-axis type)	FP2-PN2AN		128SX, 128SY	1	
	Positioning unit RTEX (4-axis type)	FP2-PN4AN				
	Positioning unit RTEX (8-axis type)	FP2-PN8AN				
	Positioning Unit (Interpolation type) 2-axis type	Transistor output type	FP2-PP2T	32SX, 32SY	1	
		Line driver output type	FP2-PP2L			
	Positioning Unit (Interpolation	Transistor output type	FP2-PP4T	64SX, 64SY	1	
	type) 4–axis type	Line driver output type	FP2-PP4L			
	Multi communication unit	FP2-MCU	•	16SX, 16SY	1	
	Serial data unit	FP2-SDU		16SX, 16SY	1	
	C.C.U.	FP2-CCU		16SE (0SE) (* Note 3)	1	
	S-LINK unit	FP2-SL2		(* Note 1)	1	
	Multi-wire link unit	FP2-MW		16SE (0SE) (* Note 3)	1	
	ET-LAN unit	FP2-ET1		32SX, 32SY (0SE)	1	
	MEWNET-VE Link unit	FP2-VE		32SX, 32SY (0SE)	1	
	FNS Unit	FP2-FNS		16SE (0SE) (* Note 3)	1	
	FMU Unit	PROFIBUS	FIBUS FP2-DPV1-M		1	
		Device Net	FP2-DEV-M	(* Note 3)		
		CAN open	FP2-CAN-M	1		

🔊 Notes

- 1) The "occupied I/O point" of S-LINK unit and CPU with S-LINK, will vary depending on the unit settings. For details, refer to "FP2 S-LINK Manual".
- 2) When using a CPU with S-LINK, the functionality of the slots are increased, and slot numbers can be allocated as if two S-LINK units were installed. For more details, refer to "FP2 S-LINK Manual".
- 3) The occupied point can be set to "0" with arbitrary allocation.
- 4) When the handshake by I/O is not used, the number of occupied points can be set to "0" by allocating arbitrarily.

3.2 Arbitrary Allocation


3.2.1 Using Arbitrary Allocation

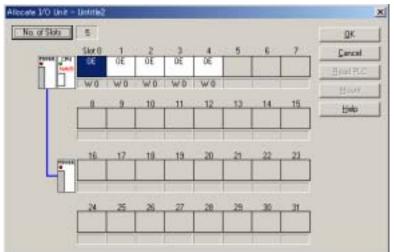
In the case of arbitrary allocation, I/O allocations are decided at the time of system design, and the allocations are registered in the PLC using a programming tool such as NPST-GR/FPWIN GR software.

At this time, registration can be performed even if the I/O units are not yet installed on the backplane according to the allocations. However, before operation the I/O units must be installed and set as required by the system design.

3.2.2 Allocation Example of CPU Backplane

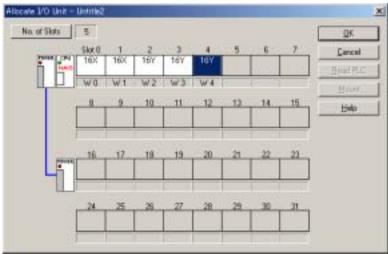
Backplane: 7-module type
Power supply unit: 1 module
CPU: 1 module
I/O units used:
16-point type DC input unit: 2 units
16-point type transistor output unit: 3 units

3.2 Arbitrary Allocation

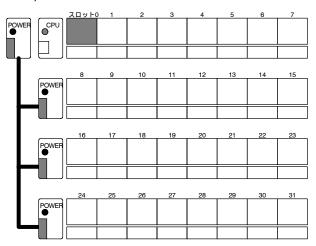

Registering with programming tool software Preparations

Display the allocation screen.

- 1. Set the "FPWIN GR" software to OFFLINE mode.
- 2. On the "Option" menu, select "Allocate I/O Map".


Creating allocations

 In "No. of Slots", enter the number of modules(number of slots) to used. OE is assigned to the slots after they are specified. In this case, the number of modules that can be used is 5, so enter "5".

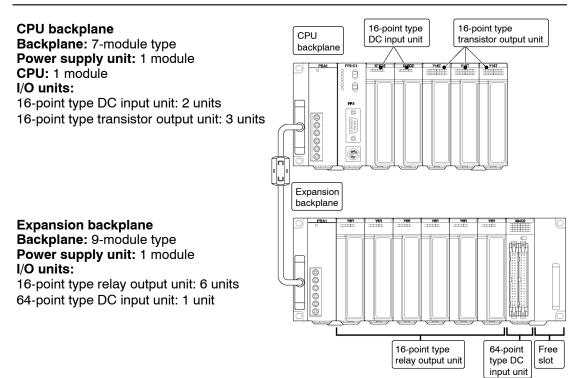


2. Assign input (X) or output (Y) according to the I/O units to be installed in each slot.

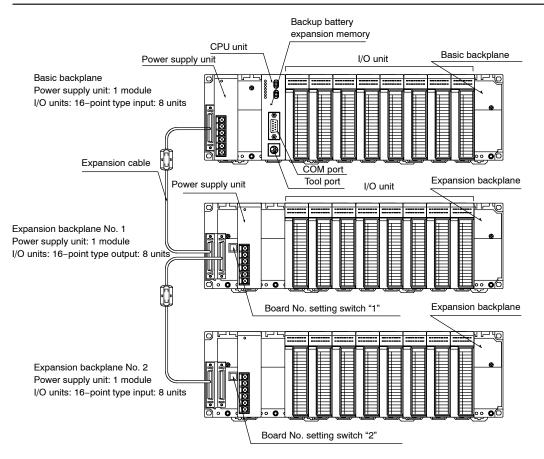
Assign 16X to slots 0 and 1, and 16Y to slots 2 through 4.

When a system is configured with the FP2 backplane H type (AFP25***H), the display is shown as AFP25*** since no exclusive tool display is not available for the H type. The actual system is as shown below. (No indication of the power supply unit and expansion unit.)

Registering contents of allocation


Write the contents of allocation to the System register of the CPU.

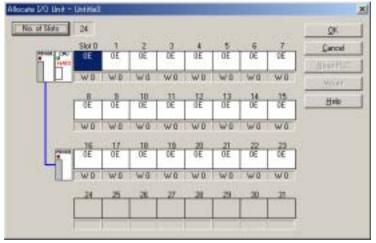
- 1. On the "Online" menu, select "Online Edit Mode".
- 2. On the "File" menu, select "Download to PLC". The program is transferred to the PLC (programmable controller), and the contents of allocation are simultaneously written to the PLC as part of its system register settings.


3.2 Arbitrary Allocation

3.2.3 Allocation Example of Expansion Backplane

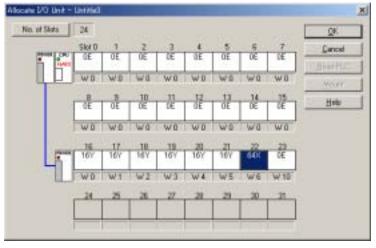
3.2.3.1 When Using FP2 Backplane

3.2.3.2 When Using FP2 Backplane H Type



3.2 Arbitrary Allocation

Registering with programming tool software (FPWIN GR) Create allocations


1. In "No. of Slots", add 16 to the number of modules used on the expansion backplane and enter the result.

OE is assigned to each of the specified slots. In this case, enter "24".

2. Assign input (X) or output (Y) according to the I/O units to be installed in each slot.

In the example, assign 16X to slots 0 through 7, 16Y to slots 8 through 15, and 16X to slots 16 through 23.

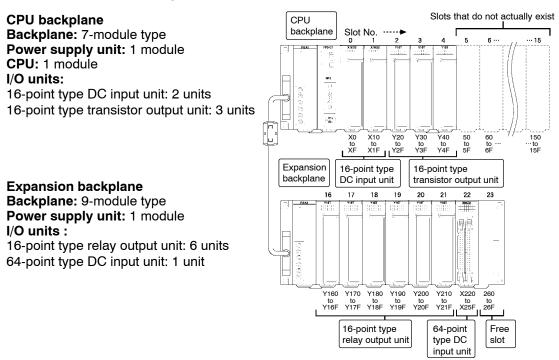
Registering contents of allocation

Write the contents of allocation to the system register of the CPU.

- 1. On the "Online" menu, select "Online Edit Mode".
- 2. On the "File" menu, select "Download to PLC". The program is transferred to the PLC (programmable controller), and the contents of allocation are simultaneously written to the PLC as part of its system register settings.

3.3 I/O Mount Allocation

3.3.1 Using I/O Mount Allocation


The I/O allocation state of mounted units is directly registered.

If an expansion backplane has been added on the FP2 backplane, the number of slots for I/O units on the CPU backplane is taken as 16 slots. (The FP2 backplane H type occupies 8 slots only.)

For a slot with no unit mounted, an equivalent of 16 points (16E) is allocated.

3.3.1.1 Example of I/O Mount Allocation

The I/O number in the diagram is the result of execution of I/O mount allocation.

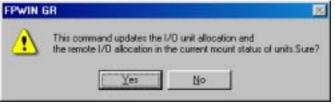
At the expansion backplane, I/O numbers are allocated continuing from the last number allocated to slots that do not actually exist on the CPU backplane.

3.3 I/O Mount Allocation

3.3.1.2 Procedure for I/O Mount Allocation

Preparations

Turn on the power of the PLC and set the mode selector of the CPU to PROG. mode. Set the programming tool software to online monitor.


Procedure:

1. On the "Option" menu, select "Allocate I/O Map".

a of Slots	0 \$4x0	1	2	,	4	5	6	7	QK. Earcel
		9	10	-11	12	12	14	15	Bead PL Hourd Belg
Par	16	17	10	19	20	21	22	23	
	24	25	35	27	21	21	30	'n	

2. Click [Mount] button.

The following message appears, and then select [Yes].

The appearance of the allocation of the mounted units will be read into and displayed on the FPWIN GR screen. At the same time, the contents of allocation will be registered in the system registers of CPU.

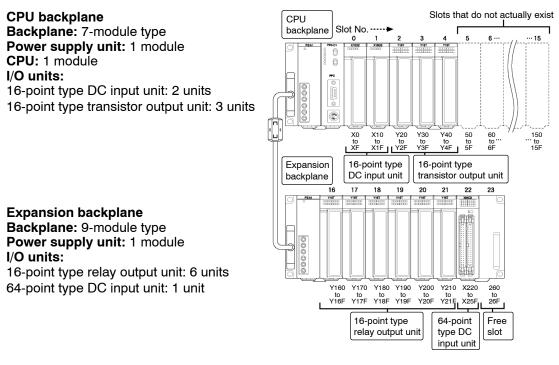
3.4 Automatic Allocation

3.4.1 Using Automatic Allocation

After turning on the power, I/O numbers are determined by the I/O unit installation positions and assigned in order beginning from the left side of the CPU backplane.

If an expansion backplane has been added on the FP2 backplane, the number of slots for I/O units on the CPU backplane is taken as 16 slots. (The FP2 backplane H type occupies 8 slots only.)

For a slot with no unit mounted, an equivalent of 16 points (16E) is allocated.


In the case of automatic allocation, I/O numbers are assigned based on the installed I/O units each time the power is turned on.

Note

With automatic allocation, the contents of allocation are not registered to the system register.

3.4.1.1 Example of Automatic Allocation

The I/O numbers in the illustration are the allocated I/O numbers using automatic allocation.

3.4 Automatic Allocation

At the expansion backplane, I/O numbers are allocated continuing from the last number allocated to slots that do not actually exist on the CPU backplane.

3.4.1.2 Procedure for Automatic Allocation

Automatic allocation is executed when the power is turned on.

If I/O allocations have previously been registered using arbitrary allocation or I/O mount allocation, automatic allocation is not executed.

Clear the registered allocations and then turn on the power once again (respectively section 3.5).

The result of the automatic allocation will be the same as for I/O mount allocation.

3.5 Procedure for Clearing Registered Content

3.5 Procedure for Clearing Registered Content

3.5.1 Meaning of Clearing Registered Content

To repeat the I/O allocation, it is necessary to clear registered content. Registered content is cleared by initializing the system registers.

Note

System registers not related to I/O allocations are also initialized. If you only want to change the registered I/O allocations, do not initialize the system registers. Instead, use arbitrary allocation (respective section 3.2).

3.5.2 Clearing Content Using Programming Tool Software

Preparations

Set the "FPWIN GR" tool software to online monitor.

Procedure:

1. On the "Option" menu, select "PLC Configuration".

2. Click [Initialize] button.

Select "PLC Configuration + I/O Unit + Remote I/O" and Click "OK" button. The content of system registers and I/O allocations will be cleared.

3.6 I/O Numbers of Free Slots

3.6.1 I/O Numbers of Free Slots

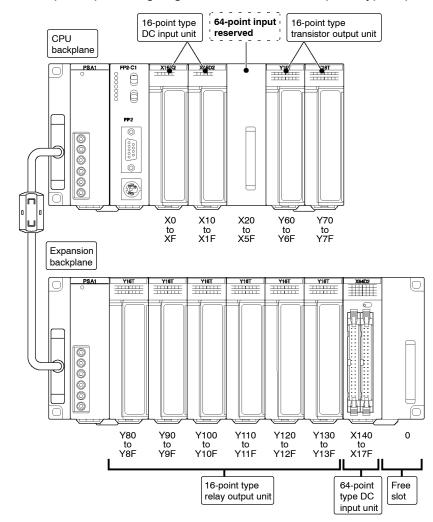
I/O numbers are also assigned to modules (slots) where no units are installed. Programming and system construction can be made more efficient by using an appropriate manner of assigning I/O numbers.

3.6.2 Differences Due to Allocation Methods

The manner of assigning I/O numbers differs depending on the I/O allocation method.

3.6.2.1 When Arbitrary Allocation is Used

I/O point numbers can assigned as desired.


Advantage

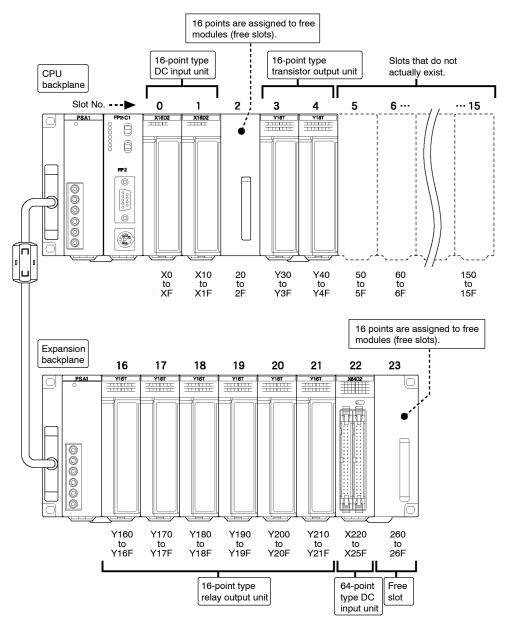
When designing a system with the intention of adding units in the future, you can use arbitrary allocation to assign ahead of time the I/O point numbers of the units to be added.

If no assignment is made, 0 is assigned.

By using I/O number assignments that take into account future expansion when creating the program, no discrepancies will occur when the new units are added on. Planning ahead for expansion improves efficiency.

next page

Example of pre-assigning I/O numbers for a 64-point type input unit to a free slot

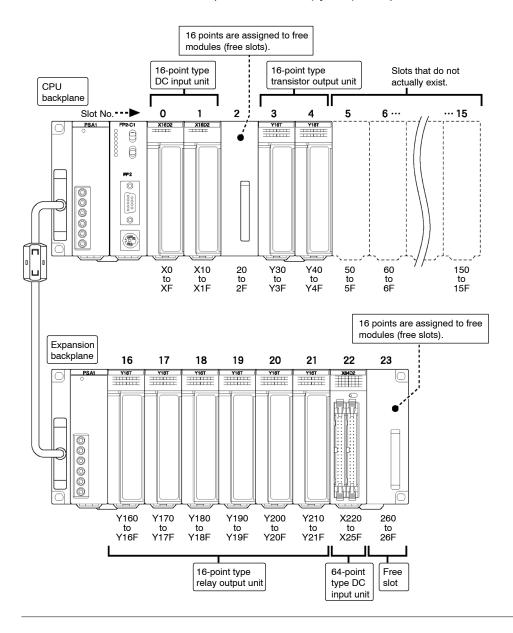

3.6 I/O Numbers of Free Slots

3.6.2.2 When I/O Mount Allocation is Used

When I/O mount allocation is executed, 16 points are uniformly assigned to each free slot.

Advantage

When the I/O unit that occupy 16 points is added, there is no need to worry about I/O number discrepancies.

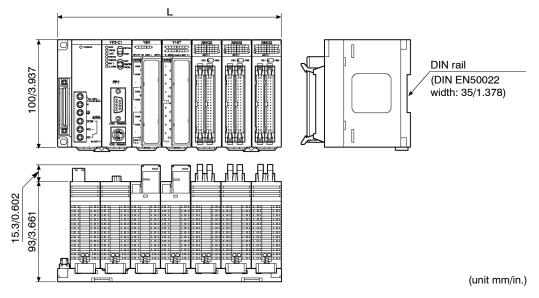

3.6.2.3 When Automatic Allocation is Used

When automatic allocation is executed, 16 points are uniformly assigned to each free slot.

With automatic allocation, the contents of allocation are not registered. Assignments are performed each time the power of PLC is turned on based on the units actually mounted.

Advantage

Automatic allocation is convenient when frequent structural changes are conducted such as during trial runs and testing of the program. It is convenient when using a large number of standard I/O units (units that occupy 16 points).



3.6 I/O Numbers of Free Slots

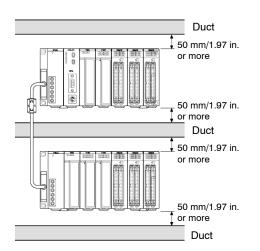
Installation and Wiring

4.1.1 Installation Space and Environment

Dimensions

Type of FP2 backplane	Type of FP2 backplane H type	L (mm/in.)
5-module type		140/5.512
7-module type		209/8.228
9-module type		265/10.433
12-module type	11-module type (Basic backplane)	349/13.740
	10-module type (Expansion backplane)	
14-module type		405/15.945

The 5-module type backplane has no connector for expansion. Installation to a DIN rail is possible.

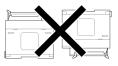

Installation location

Be sure to maintain a sufficient distance from wiring ducts, and other machines below and above the unit for proper ventilation.

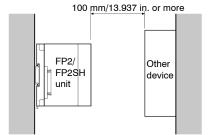
Do not install the units stacked up or horizontally. Doing so will prevent proper cooling of the unit and cause overheating inside the PLC (programmable controller).

Do not install the unit above devices which generate heat such as heaters, transformers or large scale resistors.

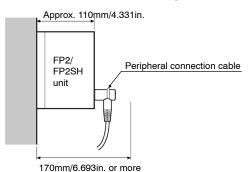
In order to eliminate any effects from noise emission, power wires and electromagnetic devices should be kept at least 100 mm/13.937 in. away from the surfaces of the unit. When installing the unit behind the doors of the operation panel, be especially careful to maintain these distances.



Incorrect: Stacked-up installation


Incorrect: Upside-down installation

Incorrect: Horizontal installation



Correct: Proper installation

Space of Programming Tool Connection

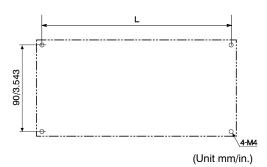
Leave a space of at least 170mm/6.693in. from the mounting surface for programming tool connections and wiring.

Operating environment (Use the unit within the range of the general specifications when installing)

Ambient temperatures:0 to +55 °C

Ambient humidity: 30% to 85% RH (at 25 °C, non-condensing)

For use in pollution Degree 2 environment.


- Do not use it in the following environments.
- Direct sunlight
- Sudden temperature changes causing condensation.
- Inflammable or corrosive gas.
- Excessive airborne dust, metal particles or saline matter.
- Benzine, paint thinner, alcohol or other organic solvents or strong alkaline solutions such as ammonia or caustic soda.
- Direct vibration, shock or direct drop of water.
- Influence from power transmission lines, high voltage equipment, power cables, power equipment, radio transmitters, or any other equipment that would generate high switching surges. (100mm or more)

FP2/FP2SH

4.1.2 Mounting Method

4.1.2.1 Backplane

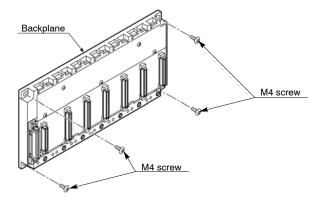
Mounting Hole Dimensions

FP2 backplane

Type of backplane	Part number	L (mm/in.)
5-module type	FP2-BP05	130/5.118
7-module type	FP2-BP07	199/7.835
9-module type	FP2-BP09	255/10.039
12-module type	FP2-BP12	339/13.346
14-module type	FP2-BP14	395/15.551

FP2 backplane H type

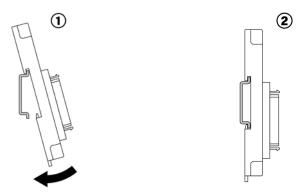
Type of backplane	Part number	L (mm/in.)
11-module type (Basic backplane)	FP2-BP11MH	339/13.346
10-module type (Expansion backplane)	FP2-BP10EH	339/13.346


Attaching with Screws

Note

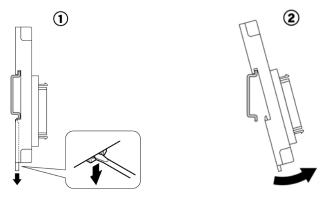
Secure the backplane while the unit is not installed. (Tightening torque: 0.9 to 1.1 N[·]m)

Procedure:


- 1. Lightly secure the upper part of the backplane using the mounting holes.
- 2. Align the mounting holes for the lower part and secure.
- 3. Tighten the upper screws.
- 4. Make sure that backplane is securely attached.

Installation to a DIN Rail

Procedure:


- 1. Attach the railing on the rear of the backplane to the DIN rail.
- 2. Push the backplane in the direction of the arrow, as illustrated below, so that it attaches securely.

Removal from a DIN Rail

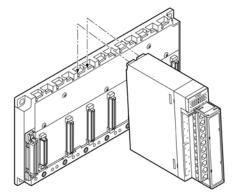
Procedure:

- 1. Place the tip of a flat-headed screwdriver into the slot for the DIN rail attachment lever.
- 2. Pull out the DIN rail attachment lever with the flat-headed screwdriver and remove the backplane from the DIN rail.

4.1.2.2 Units

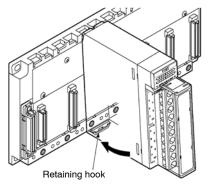
Be sure to install the unit according to the following procedures.

Notes


- Complete the backup battery installation and operation condition switches setting prior to installing the CPU (
 sections 2.2.1 and 4.1.4).
- 1) FP2 backplane
- With the CPU backplane, install in order from the left to the right, the power supply unit, the CPU, the I/O and the intelligent units.

With the expansion backplane, install in order from the left to the right, the power supply unit, the I/O and the intelligent units.

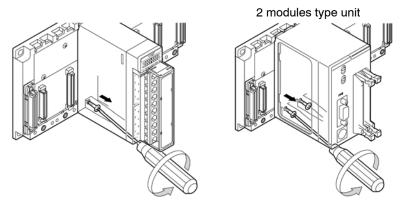
- Install a power supply unit on to the expansion backplane as well.
- Do not install a CPU on to the expansion backplane.
- 2) FP2 backplane H type
- The basic FP2 backplane that the CPU unit can be installed and the expansion backplane that other various units can be installed are available.
- The positions to install a power supply unit, CPU unit and I/O units are fixed. When using a 1-module type power supply unit, a space of 1 module will be created between the power supply unit and CPU unit, or between the power supply unit and I/O units.
- Do not put the wiring in the space in order to prevent the effect of radiation noise.
- Set the board No. setting switches on the expansion backplane.
- A power supply unit is also necessary on an expansion backplane.


Procedure:

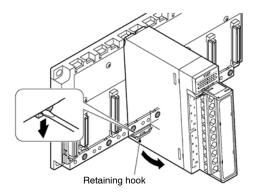
1. Insert the installation tabs on the rear of the unit into the top of the backplane.

2. Push the unit in the direction of the arrow and install onto the backplane.

When installing the unit to the backplane, make sure the retaining hook firmly clicks into place and that the unit is properly secured to the backplane.



3. Attach the installation screws and further secure the unit to the backplane. For the 2 modules type unit, there are two installation screws.



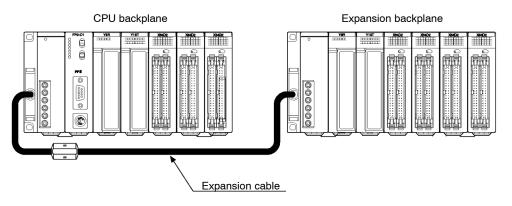
Removing the unit Procedure:

1. Loosen the installation screws.

2. Pull out the retaining hook at the bottom of the unit with the tip of a flat-headed screwdriver and remove the unit as illustrated below.

4.1.3 Connecting Expansion Cable

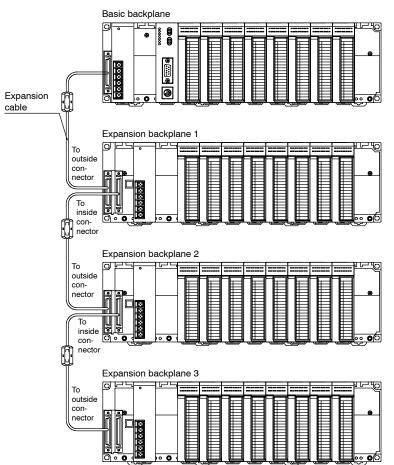
Attaching Connectors


Make sure that the expansion cable is firmly connected.

Do not subject the expansion cable to any twisting or stress.

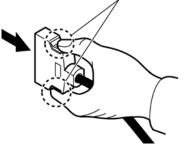
Connect the expansion cable so that the ferrite core of the expansion cable is situated in close proximity to CPU backplane.

FP2 backplane


One backplane can be added on for expansion.

FP2 backplane H type

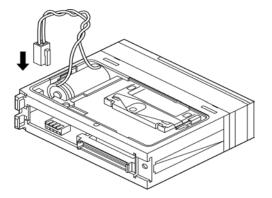
Three expansion backplanes H type can be added on for expansion.


Connect a cable from the connector of the basic backplane to the outside connector of the expansion backplane with the smallest number, and then connect a cable from the inside connector to the outside connector of the next expansion backplane.

Removing the expansion cable

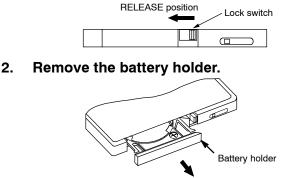

Hold down the buttons on the side of the connector to release it from the locked condition and pull out the expansion cable.

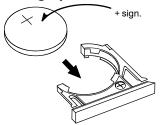
Hold down the buttons and pull outward.



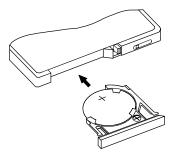
4.1.4 Preparing the Backup Battery

With the FP2, be sure to remove the insulating sheet of the backup battery before installing the CPU onto backplane.


With the FP2SH, connect the connector of backup battery. Make sure the connector terminals are positioned in the correct directions.

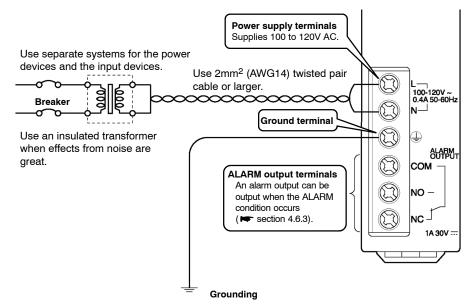

IC memory card: AFP2209

The battery has been removed from the battery holder before shipment. Install the battery before mounting the CPU unit.


1. Move to the lock switch to the RELEASE position (toward the battery holder).

3. Place the battery in the battery holder with the side with a '+' sign facing up.

4. Insert the battery holder with the battery all the way seated in the IC memory card.
* The lock swich is automatically back to the LOCK position when removing the battery holder. In this state, insert the battery holder all the way seated.



Confirm the lock switch is in the LOCK position.

4.2 Power Supply Wiring

4.2.1 Wiring of Power Supply

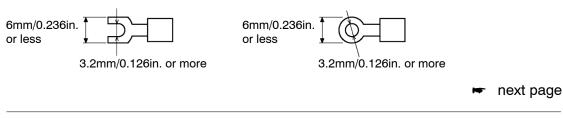
Pin layout of power supply unit (FP2-PSA1 is used for the example below.)

Power supply voltage

Verify that the power supply voltage connected to the power supply unit is within allowable limits.

Туре	Part number	Rated input voltage	Operating voltage rage	Rated output current
AC type	FP2-PSA1	100 to 120V AC	85 to 132V AC	2.5A
	FP2-PSA2	200 to 240V AC	170 to 264V AC	2.5A
	FP2-PSA3	100 to 240V AC	85 to 264V AC	5A
DC type	FP2-PSD2	24V DC	20.4 to 31.2V DC	5A

Power supply wire

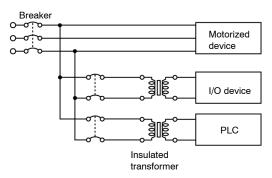

Use power supply wire that is thicker than 2mm² (AWG14) to minimize the voltage drop.

Pressure connection terminal

Fork type terminal

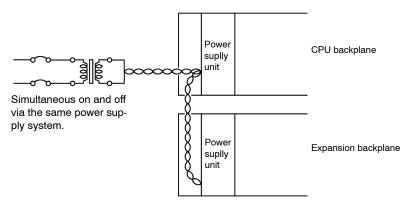
The following M3 pressure connection terminals are recommended for the wiring.

Round type terminal


4.2 Power Supply Wiring

Example of suitable pressure connection terminal

Manufacturer	Shape	Part number	Suitable wire
JST Mfg. Co., Ltd.	Round type	2-N3A	1.04 to 2.63mm ²
	Fork type	2-MS3	Use wire that is thicker than 2mm ² .


Power supply system

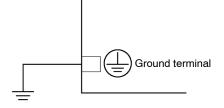
Use separate wiring systems for the FP2/FP2SH power supply unit output devices and motorized devices.

Note

Use the same power supply system for the expansion backplane and CPU backplane so that they are turned on and off simultaneously.

Eliminating effects from noise

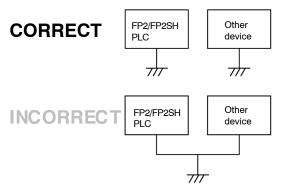
Use a low noise power supply


There is sufficient noise resistance for superimposed noise in the power supply wiring, however using an insulated transformer is recommended for further noise protection.

Twist the power supply wire to minimize the effects of noise.

4.2.2 Grounding

Always ground the FP2/FP2SH PLC.


Ground the unit with the ground terminal as illustrated below.

For grounding purposes, use ground wires with a minimum of $2mm^2$ (AWG14) and the grounding connection should have a resistance of less than 100Ω .

The point of grounding should be as close to the FP2/FP2SH PLC as possible. The ground wire should be as short as possible.

If two devices share a single ground point, it may produce an adverse effect. Always use an exclusive ground for each device.

Input terminal

COM

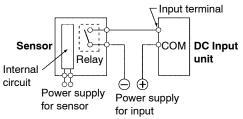
DC Input

DC Input

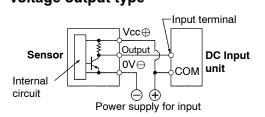
unit

unit

4.3 Wiring Input and Output


4.3 Wiring Input and Output

4.3.1 Input Wiring


Before the wiring, carefully confirm the specifications for the units to be wired. Specifically, limitations on the ambient temperature and number of points that can be on simultaneously will differ for different units.

Connection of Sensors

Relay output type

Voltage output type

Input terminal Sensor COM Internal

NPN open collector output type

Sensor

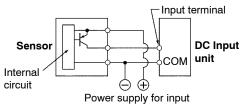
Two-wire type

Internal

circuit

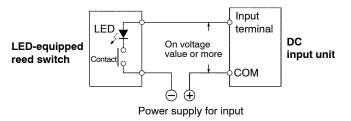
circuit

Vcc⊕ Output


ov⊖

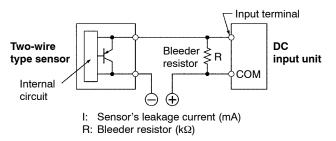
Θ (f)

Power supply for input


PNP open collector output type

Connection of LED-equipped Reed Switch

With a LED is connected to an input contact such as LED-equipped reed switch, make sure that the voltage value applied to the input terminal of PLC is greater than on voltage value.


In particular, take care when connecting a number of switches in series.

Connection of Two-wire Type Sensor

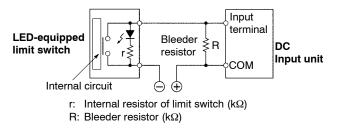
If the input of the PLC is not turned off because of leakage current from the two-wire type sensor, the connection of a bleeder resistor is recommended, as shown below.

Using 16-point type DC input unit (FP2–X16D2) (Off voltage: 2.5V, Input impedance: $3k\Omega$)

The off voltage of the input is 2.5V, therefore, select an R value so that the voltage between the COM terminal and the input terminal will be less than 2.5V. The input impedance is $3k\Omega$.

The resistance R of the bleeder resistor is: R $\leq \frac{7.5}{3 \times I-2.5}$ (kΩ)

The wattage W of the resistor is: W= (Power su


In the actual selection, use a value that is 3 to 5 times the value of W.

4.3 Wiring Input and Output

Connection of LED-equipped Limit Switch

With the LED-equipped limit switch, if the input of the PLC is not turned off or if the LED of the limit switch is kept on because of the leakage current, the connection of a bleeder resistor is recommended, as shown below.

Using 16-point type DC input unit (FP2–X16D2) (Off voltage: 2.5V, Input impedance: $3k\Omega$)

The off voltage of the input is 2.5V, therefore when the power supply voltage is 24V, select R so that

the current will be greater than I = $\frac{24 - 2.5}{r}$

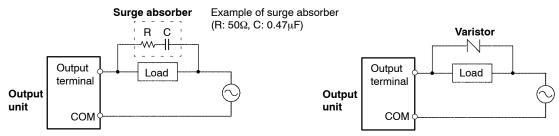
The resistance R of the bleeder resistor is: R $\leq \frac{7.5}{3 \times I-2.5}$ (kΩ)

The wattage W of the resistor is: $W = \frac{(Power supply voltage)^2}{R}$

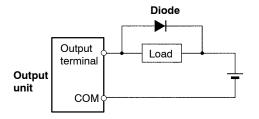
In the actual selection, use a value that is 3 to 5 times the value of W.

4.3.2 Output Wiring

Before the wiring, carefully confirm the specifications for the units to be wired. Specifically, limitations on the ambient temperature, number of points that can be on simultaneously and load current will differ for different units.

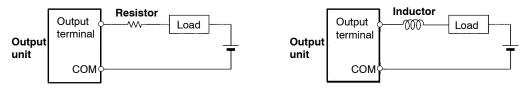

Use a protection circuit when connecting inductive loads and capacitive loads.

Connection of Inductive Loads


When connecting an inductive load, a protective circuit should be connected in parallel with the load.

When connecting the DC type inductive loads and relay type output unit, be sure to connect a diode for protective circuit across the ends of the load. This will effect the life of the relay.

When using an AC type inductive load


When using a DC type inductive load

4.3 Wiring Input and Output

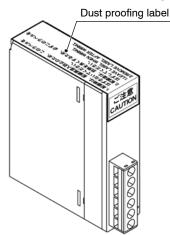
Connection of Capacitive Loads

When connecting the loads with large in-rush currents, be sure to connect a protection circuit such as resistor or inductor in series with the load as shown below.

Precautions for Overload

To protect the units from overloading, it is recommended to attach an external fuse for each point. There are times that the elements for the output units cannot be protected even if external fuses are connected.

4.3.3 Cautions Regarding Units

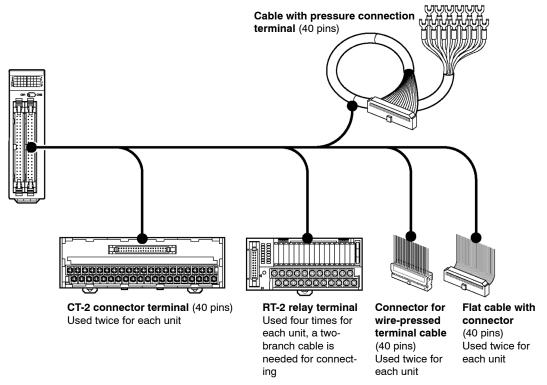

Wiring

Arrange the wiring so that the input and output wiring are separated, and so that the input and output wiring is separated from the power wiring, as so much as possible. Do not route them through the same duct or wrap them up together.

Separate the wires of input/output circuit from the power and high voltage wires by at least 100mm/3.937in.

Dust Proofing Label

Do not remove the dust proofing label that is attached to the upper portion of the unit until the unit is completely installed and the wiring is completed. However, be sure to remove the dust proofing label prior to operation.



4.4 Wiring the Connector Type I/O Units

4.4.1 Wiring the Connector Type Units

Wiring Method

There are 4 methods for wiring to a connector type I/O unit. Choose the most appropriate method depending on the installation conditions. The set of connector for wire-pressed terminal cable is supplied with the unit.

When using connector for wire-pressed terminal cable(supplied with the unit)

You can directly connect wires from AWG 22 (0.3mm²) and AWG 24 (0.2mm²).

Eliminates the bother of wiring connections because the wires can be connected without removing the covers from the wires.

Can correct wiring mistakes easy.

A tool exclusively designed for this purpose is necessary.

For detailed information 🖛 section 4.4.2

When using connector and relay terminals

Can be connected using exclusive cables. With the RT-2 relay terminal, you can control up to 2A. For detailed information **•** section 4.4.3

🖛 next page

When using cable with pressure connection terminal

The connector converted to a pressure connection terminal using the exclusive cable. The I/O numbers and corresponding pressure connection terminal pin numbers are the same as for connector terminals on section 4.4.3.

When using flat cable

There is a cable with a connector on only one end.

When using suitable connector, you can use a commercially available flat cable.

For detailed information resection 4.4.4

Table of Connector and Terminal

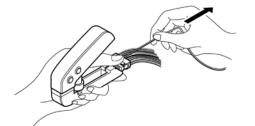
Number or co	nnector pins			40 pins
Using con-	Housing			Supplied with the unit
nector for wire-pressed	Contact (for AWG22 and AWG24)			Maintenance part number: AFP2801
terminal	Semi-cover			
cable	Pressure co	onnection too	ol	AXY52000FP
Using termi-	CT-2 con-	DIN rail mou	unting type	AYC1140
nal	nector terminal	Connector terminal	1m/3.281ft.	AYT51403
		cable	2m/6.562ft.	AYT51405
			unting type	AY231502 for input
	1			AY232502 for output
		Connector terminal cable	1m/3.281ft.	AY15633
			2m/6.562ft.	AY15635
Using cable with pres-	1m/3.281ft.			AYT58403
sure connec- tion terminal	2m/6.562ft.			AYT58405
Using flat		Flat cable with a connector on one end1m/3.281ft.2m/6.562ft.		AFB8541
cable	connector of			AFB8542
	Connector	only		AFP2802 (40-pin connectors)

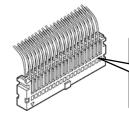
- 1) The connectors for wire-pressed terminal cable (40 pins) are supplied with the unit.
- 2) The RT-2 relay terminal cannot be used with PNP collector output type output units (FP2-Y32P, FP2-Y64P, FP2-XY64D2P and FP2-XY64D7P).

4.4.2 Connecting with Connector for Wire-pressed Terminal Cable

Connector for Wire-pressed Terminal Cable

This is a connector that allows loose wires to be connected without removing the wire's insulation.


The pressure connection tool is required to connect the loose wires.



Connector for wire-pressed terminal cable (40 pins)

Rewiring

If there is a wiring mistake or the wire is incorrectly pressure-connected, the contact puller pin provided with the fitting can be used to remove the contact.

Press the housing against the pressure connection tool so that the contact puller pin comes in contact with this section.

Suitable Wires (twisted wire)

Size	Cross section area	Insulation thickness	Remark	Rated current
AWG22	0.3mm ²	dia.1.5 to dia.1.1	Twisted wire of 12 pcs/0.18	3A
AWG24	0.2mm ²		Twisted wire	

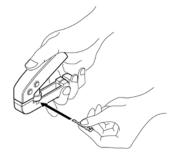
Note

The contact suitable for AWG#22 or AWG#24 is supplied with the product. For purchasing a contact suitable for AWG#26 or AWG#28, specify AFP7231FP.

Connector for Wire-pressed Terminal Cable

Unit type	Composition of accessories			
onit type	Housing	Semi-cover	Contact	
32-point input unit 32-point output unit	1 рс	2 pcs	5 pins x 8	
64–point input unit 64–point output unit 32–point input/32–point output unit	2 pcs	4 pcs	5 pins x 16	

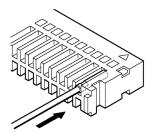
Pressure Connection Tool

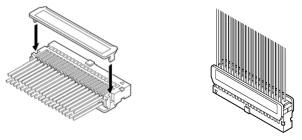

Part number: AXY52000FP

Assembly of Connector for Wire-pressed Terminal Cable

The wire end can be directly press-fitted without removing the wire's insulation, saving labor.

Procedure:


1. Bend the contact back from the carrier, and set it in the pressure connection tool.


2. Insert the wire without removing its insulation until it stops, and lightly grip the tool.

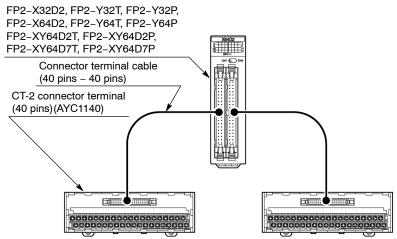
3. After press-fitting the wire, insert it into the housing.

4. When all wires has been inserted, fit the semi-cover into place.

4.4.3 Connecting the Terminals

CT-2 Connector Terminal

Use a 40-pin type CT-2 connector terminal.


For connecting the terminal to the terminal block, use M3-sized pressure connection terminals.

Note

If using the CT-2 connector terminal for the input, connect between the COM terminals.

If using the CT-2 connector terminal for the output, 24V DC should be supplied between (+) and (-) terminals. Power is supplied to drive the internal circuit of the output unit. (Connect between each the (+) terminals and between each the (-) terminals.)

CT-2 connector terminal connection diagram for 32–point type and 64–point type I/O units and I/O mixed units

Correspondence table of 32-point type input unit

When a 32-point type input unit is next to the standard type CPU on the right side.

Terminal number	Input number	Terminal number	Input number
A1	X0	B1	X8
A2	X1	B2	X9
A3	X2	B3	XA
A4	Х3	B4	XB
A5	X4	B5	XC
A6	X5	B6	XD
A7	X6	B7	XE
A8	X7	B8	XF
A9	COM	B9	COM
A10	NC	B10	NC
A11	X10	B11	X18
A12	X11	B12	X19
A13	X12	B13	X1A
A14	X13	B14	X1B
A15	X14	B15	X1C
A16	X15	B16	X1D
A17	X16	B17	X1E
A18	X17	B18	X1F
A19	COM	B19	COM
A20	NC	B20	NC

Correspondence table of 64-point type input unit

When a 64-point type input unit is next to the standard type CPU on the right side.

Examples for the CN1 group

Terminal	Input	Terminal	Input
number	number	number	number
A1	X0	B1	X8
A2	X1	B2	X9
A3	X2	B3	XA
A4	X3	B4	XB
A5	X4	B5	XC
A6	X5	B6	XD
A7	X6	B7	XE
A8	X7	B8	XF
A9	COM	B9	COM
A10	NC	B10	NC
A11	X10	B11	X18
A12	X11	B12	X19
A13	X12	B13	X1A
A14	X13	B14	X1B
A15	X14	B15	X1C
A16	X15	B16	X1D
A17	X16	B17	X1E
A18	X17	B18	X1F
A19	COM	B19	COM
A20	NC	B20	NC

Examples for the CN2 group

Terminal	Input	Terminal	Input
number	number	number	number
A1	X20	B1	X28
A2	X21	B2	X29
A3	X22	B3	X2A
A4	X23	B4	X2B
A5	X24	B5	X2C
A6	X25	B6	X2D
A7	X26	B7	X2E
A8	X27	B8	X2F
A9	COM	B9	COM
A10	NC	B10	NC
A11	X30	B11	X38
A12	X31	B12	X39
A13	X32	B13	ХЗА
A14	X33	B14	ХЗВ
A15	X34	B15	X3C
A16	X35	B16	X3D
A17	X33	B17	X3E
A18	X37	B18	X3F
A19	COM	B19	COM
A20	NC	B20	NC

Correspondence table of 32-point type output unit

When a 32-point type output unit is next to the standard type CPU on the right side.

Terminal number	Output number	Terminal number	Output number
A1	Y0	B1	Y8
A2	Y1	B2	Y9
A3	Y2	B3	YA
A4	Y3	B4	YB
A5	Y4	B5	YC
A6	Y5	B6	YD
A7	Y6	B7	YE
A8	Y7	B8	YF
A9	-	B9	-
A10	+	B10	+
A11	Y10	B11	Y18
A12	Y11	B12	Y19
A13	Y12	B13	Y1A
A14	Y13	B14	Y1B
A15	Y14	B15	Y1C
A16	Y15	B16	Y1D
A17	Y16	B17	Y1E
A18	Y17	B18	Y1F
A19	-	B19	-
A20	+	B20	+

Correspondence table of 64-point type output unit

When a 64-point type output unit is next to the standard type CPU on the right side.

Examples for the CN1 group

Terminal number	Output number	Terminal number	Output number
A1	Y0	B1	Y8
A2	Y1	B2	Y9
A3	Y2	B3	YA
A4	Y3	B4	YB
A5	Y4	B5	YC
A6	Y5	B6	YD
A7	Y6	B7	YE
A8	Y7	B8	YF
A9	-	B9	-
A10	+	B10	+
A11	Y10	B11	Y18
A12	Y11	B12	Y19
A13	Y12	B13	Y1A
A14	Y13	B14	Y1B
A15	Y14	B15	Y1C
A16	Y15	B16	Y1D
A17	Y16	B17	Y1E
A18	Y17	B18	Y1F
A19	-	B19	-
A20	+	B20	+

Examples for the CN2 group

Terminal	Output	Terminal	Output
number	number	number	number
A1	Y20	B1	Y28
A2	Y21	B2	Y29
A3	Y22	B3	Y2A
A4	Y23	B4	Y2B
A5	Y24	B5	Y2C
A6	Y25	B6	Y2D
A7	Y26	B7	Y2E
A8	Y27	B8	Y2F
A9	-	B9	-
A10	+	B10	+
A11	Y30	B11	Y38
A12	Y31	B12	Y39
A13	Y32	B13	Y3A
A14	Y33	B14	Y3B
A15	Y34	B15	Y3C
A16	Y35	B16	Y3D
A17	Y36	B17	Y3E
A18	Y37	B18	Y3F
A19	-	B19	-
A20	+	B20	+

Correspondence table of 32-point input/32-point output type I/O mixed unit

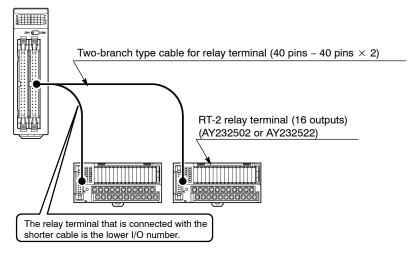
When the I/O mixed unit is next to the standard type CPU on the right side.

Examples for the CN1 group

Terminal	Input	Terminal	Input
number	number	number	number
A1	X0	B1	X8
A2	X1	B2	X9
A3	X2	B3	XA
A4	X3	B4	XB
A5	X4	B5	XC
A6	X5	B6	XD
A7	X6	B7	XE
A8	X7	B8	XF
A9	СОМ	B9	COM
A10	NC	B10	NC
A11	X10	B11	X18
A12	X11	B12	X19
A13	X12	B13	X1A
A14	X13	B14	X1B
A15	X14	B15	X1C
A16	X15	B16	X1D
A17	X16	B17	X1E
A18	X17	B18	X1F
A19	СОМ	B19	COM
A20	NC	B20	NC

Examples for the CN2 group

Terminal number	Output number	Terminal number	Output number
A1	Y20	B1	Y28
A2	Y21	B2	Y29
A3	Y22	B3	Y2A
A4	Y23	B4	Y2B
A5	Y24	B5	Y2C
A6	Y25	B6	Y2D
A7	Y26	B7	Y2E
A8	Y27	B8	Y2F
A9	-	B9	-
A10	+	B10	+
A11	Y30	B11	Y38
A12	Y31	B12	Y39
A13	Y32	B13	Y3A
A14	Y33	B14	Y3B
A15	Y34	B15	Y3C
A16	Y35	B16	Y3D
A17	Y36	B17	Y3E
A18	Y37	B18	Y3F
A19	-	B19	-
A20	+	B20	+


RT-2 Relay Terminal

For 64-point type output unit (FP2–Y64T), you can connect four sets of the RT-2 relay terminals with 16 outputs by using two-branch type cable.

For 32–point type output unit (FP2–Y32T) and output connector side of I/O mixed unit (FP2–XY64D2T, FP2–XY64D7T), you can connect two sets of the RT-2 relay terminals with 16 outputs by using two-branch type cable.

For connecting the terminal to the terminal block, use M3-sized pressure connection terminals.

RT-2 relay terminal connection diagram for 32–point type and 64–point type output units and I/O mixed units

Note

24V DC should be supplied between the (+) and (-) terminals of the relay terminal. Power is supplied to drive the relays of the terminal itself. The I/O power supply supplied to the units and the power supply supplied to the RT-2 relay terminals are the same power supply.

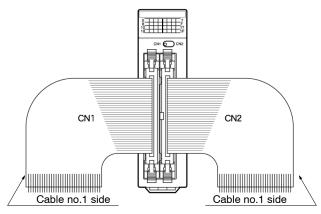
Terminal number	Output number	Terminal number	Output number
0+	Y0	8+	Y8
1+	Y1	9+	Y9
2+	Y2	A+	YA
3+	Y3	B+	YB
COM+	COM terminal for Y0 to Y3	COM+	COM terminal for Y8 to YB
4+	Y4	C+	YC
5+	Y5	D+	YD
6+	Y6	E+	YE
7+	Y7	F+	YF
COM-	COM terminal for Y4 to Y7	COM-	COM terminal for YC to YF

Correspondence table of RT-2 relay terminal

4.4.4 Connecting with Flat Cable Connector

When connecting with a flat cable connector, the relationship between the cable number and I/O number is shown below.

Correspondence table of cable number and I/O number


Examples for the CN1 group

Examples for the CN2 group

Cable No.	Input No.	Outp ut No.	Cable No.	Input No.	Outp ut No.	C N
1	X0	Y0	21	X10	Y10	1
2	X8	Y8	22	X18	Y18	2
3	X1	Y1	23	X11	Y11	3
4	X9	Y9	24	X19	Y19	4
5	X2	Y2	25	X12	Y12	5
6	XA	YA	26	X1A	Y1A	6
7	ХЗ	Y3	27	X13	Y13	7
8	XB	YB	28	X1B	Y1B	8
9	X4	Y4	29	X14	Y14	9
10	XC	YC	30	X1C	Y1C	10
11	X5	Y5	31	X15	Y15	1
12	XD	YD	32	X1D	Y1D	12
13	X6	Y6	33	X16	Y16	1;
14	XE	YE	34	X1E	Y1E	14
15	X7	Y7	35	X17	Y17	1
16	XF	YF	36	X1F	Y1F	10
17	COM	-	37	COM	-	17
18	COM	-	38	COM	-	18
19	NC	+	39	NC	+	19
20	NC	+	40	NC	+	20

Cable No.	Input No.	Outp ut No.	Cable No.	Input No.	Outp ut No.
1	X20	Y20	21	X30	Y30
2	X28	Y28	22	X38	Y38
3	X21	Y21	23	X31	Y31
4	X29	Y29	24	X39	Y39
5	X22	Y22	25	X32	Y32
6	X2A	Y2A	26	ХЗА	Y3A
7	X23	Y23	27	X33	Y33
8	X2B	Y2B	28	ХЗВ	Y3B
9	X24	Y24	29	X34	Y34
10	X2C	Y2C	30	ХЗС	Y3C
11	X25	Y25	31	X35	Y35
12	X2D	Y2D	32	X3D	Y3D
13	X26	Y26	33	X36	Y36
14	X2E	Y2E	34	X3E	Y3E
15	X27	Y27	35	X37	Y37
16	X2F	Y2F	36	X3F	Y3F
17	COM	-	37	COM	-
18	COM	-	38	COM	-
19	NC	+	39	NC	+
20	NC	+	40	NC	+

Flat Cable Connection Diagram for the 32–point Type I/O Units, 64-point Type I/O Units and I/O Mixed Unit

Flat Cable Connector

Item	Part number
Set of flat cable connector	AFP2802
Flat cable connector (with strain relief, pitch of 1.27mm) (2 pieces)	—

Suitable Wires (twisted wire)

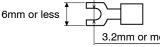
Size	Pitch	Rated current
AWG28 (7pcs./dia.0.127)	1.27mm	1A

4.5 Wiring the Terminal Block Type I/O Units

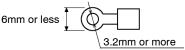
4.5 Wiring the Terminal Block Type I/O Units

Wiring the Terminal Block Type Units 4.5.1

Suitable Wires


Size	Torque
AWG22 to AWG14 (0.3mm ² to 2.0mm ²)	0.5 to 0.6N⋅m

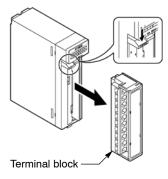
Pressure Connection Terminals


M3.5 terminal screws are used for the terminals. The following pressure connection terminals are recommended for the wiring to the terminals.

Fork type terminal

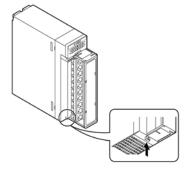
Round type terminal

3.2mm or more



Example of suitable pressure connection terminal

Manufacturer	Shape	Part number	Suitable wire
JST Mfg. Co., Ltd.	Round type	1.25-MS3	0.25 to 1.65mm ²
	Fork type	1.25-B3A	
	Round type	2-MS3	1.04 to 2.63mm ²
	Fork type	2-N3A	


Wiring to Terminal Block

Remove the terminal block before beginning the wiring operations. To remove the terminal block, push downward on the release lever located at the top of the terminal block.

i Note

Install the terminal block by inserting it all the way to its original position and pressing the lock button on the bottom of the unit. Then confirm that the terminal block is securely attached and cannot be removed.

Use the numbers described on the terminal cover by replacing with the printed contents of the terminal layout for the main unit.

4.6 Safety Measures

4.6.1 Safety Instructions

Precautions Regarding System Design

In certain applications, malfunction may occur for the following reasons:

Power on timing differences between the PLC system and I/O or motorized devices

An operation time lag when a momentary power failure occurs

Abnormality in the PLC, external power supply, or other devices

In order to prevent a malfunction resulting in system shutdown choose the adequates safety measures listed in the following:

Interlock circuit

When a motor clockwise/counter-clockwise operation is controlled, provide an interlock circuit that prevents clockwise and counter-clockwise signals from inputting into the motor at the same time.

Emergency stop circuit

Add an emergency stop circuit to controlled devices in order to prevent a system shutdown or an irreparable accident when malfunction occurs.

Start up sequence

The PLC should be operated after all of the outside devices are energized. To keep this sequence, the following measures are recommended:

Turn on the PLC with the mode selector set to the PROG. mode, and then switch to the RUN mode.

Program the PLC so as to disregard the inputs and outputs until the outside devices are energized.

Note

When stopping the operation of PLC also, have the I/O devices turned off after the PLC has stopped operating.

Alarm function

When an alarm occurs, the PLC turns off the output and stops operation. Even while in this condition, take the appropriate safety precautions outside of the PLC to ensure no malfunction or damage is transmitted to anywhere else in the system.

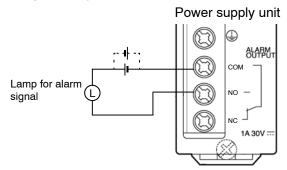
Grounding

When installing the PLC next to devices that generate high voltages from switching, such as inverters, do not ground them together.

4 – 36

4.6.2 Momentary Power Failures

If the duration of the power failure is less than 10 ms, the PLC continues to operate.


If the duration of the power failure is 10 ms or longer, the operation changes depending on the combination of units, the power supply voltage, and other factors. If the PLC continues to operate, the operation may be the same as that for a power supply reset.

The duration of the power failure is the time that the power to the power supply unit stops.

4.6.3 Alarm Output

The alarm output goes on when the watchdog timer is activated by a program error or an error in the hardware itself.

The alarm output terminal has two relay contacts, N.O. (normally open) and N.C. (normally closed). This can be used as an external alarm signal when an error occurs.

Watchdog timer

The watchdog timer is a program error and hardware error detection timer. It goes on when the scan time exceeds 640 ms.

When the watchdog timer is activated, at the same time the ALARM LED lights, the ALARM contacts on the power supply unit go on, all outputs to the output units are turned off and the unit is put in halted state. The system is in a non-processing state that includes communications with programming tools as well.

Note

The ALARM contacts of the power supply unit installed on the expansion backplane will not also operate.

4.6 Safety Measures

4 - 38

Procedure Until Operation

5.1 Before Turning ON the Power

5.1 Before Turning ON the Power

5.1.1 Check Items

After wiring, be sure to check the items below before turning on the power supply to the FP2/FP2SH system.

Item	Description
Unit mounting status	Does the unit type match the device list during the design stage?
	Are the unit mounting screws properly tightened?
	Is the unit dust-protected label detached?
	Are the installation screws for the expansion memory unit properly tightened?
	Does the power supply unit type match the actual power supply?
	Is the lock button for the input/output terminal block properly locked?
Wiring	Are the terminal block mounting screws properly tightened?
	Does the wiring of terminal match the signal name?
	Wiring size to small for the current that is carried?
Connection cable	Is the expansion cable properly connected?
	Is the connection connector properly locked?
	Is the total length 3.2 m or less? (FP2 backplane H type only)
Setting of CPU	Is the mode selector set to the PROG. mode?
	Are the specifications for the ROM and RAM correct?
Backup battery of CPU	Has the insulating sheet for the FP2 CPU battery been removed?
	Is the battery connector for the FP2SH CPU firmly connected?
Expansion backplane	<fp2 backplane="" h="" only="" type=""></fp2>
	Are the settings of the board No. setting switches correct?
Set of memory backup	<afp2209 only=""></afp2209>
battery for IC memory card	Is the included battery installed?
Other	Carefully check if there is potential for an accident.

5.1 Before Turning ON the Power

5.1.2 Procedure Up To Operation

After installing and wiring, perform the operation by following procedure.

Procedure:

1. Power on

- 1) Before turning on the power, check the items described on the previous page.
- 2) Turn on the power and then, check that the power supply unit's POW-ER LED and CPU's PROG. LED are on.

2. Enter the program

- 1) When using a programming tool, perform the operation "Clear Program" before inputting.
- 2) Enter the program using the programming tool software.
- 3) Use the programming tool's "total check function" to check for syntax errors.

3. Check output wiring

Use the forced I/O function to check the output wiring.

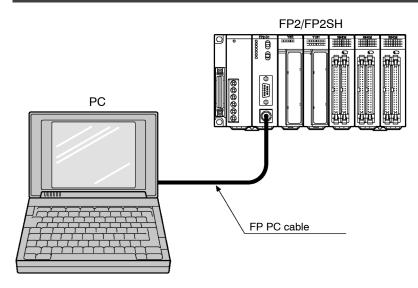
4. Check input wiring

Check the input wiring by using the input display LEDs or the monitoring function of the programming tool.

5. Trial operation

- 1) Switch the mode selector from PROG. to RUN mode, check the RUN LED turns on.
- 2) Check the operation of the program.

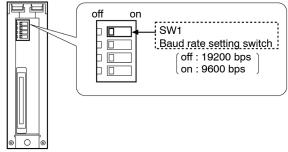
6. Edit the program (debug) if necessary


- 1) If there is an error in the operation, check the program using the monitoring function of the programming tool.
- 2) Correct the program.

7. Save the edited program

We highly recommend to save the created program onto a floppy disk or hard disk. Printing out is also possible. The program can also be saved on the ROM.

5.2 Programming with Programming Tool Software


5.2.1 Preparations

Setting the baud rate of CPU

The baud rate setting switch is on the rear side of the CPU. Perform the setting with the CPU removed from the backplane.

CPU rear side

Set the baud rate of the computer to match that of the CPU.

Connecting the FP2/FP2SH to the computer

Connect using the FP PC cable.

Computer settings

Set to asynchronous. For the setting procedure, refer to the operation manual that came with the computer.

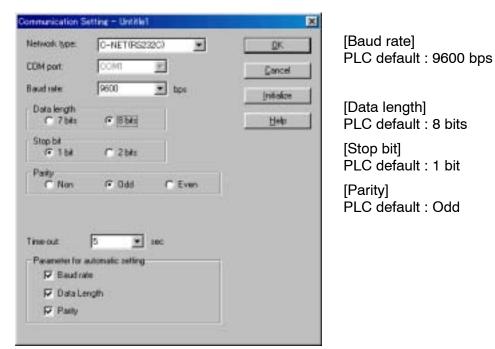
5.2.2 Configuration of Programming Tool Software

Depending on the PLC type and conditions of use, it is necessary to set the basic configuration for programming tool software. Be sure to set these parameters of configration before beginning programming.

5.2.2.1 Parameters and Setting Methods

Select PLC type

Select the PLC type that is being used.


FP SIGMA	12K	
FP0 C10,C14,C16 FP0 C32,SL1	2.7K. 5.0K	
FPO T32	10K	
FP1 C14.C16	0.98	
FP1 C24,C40	2.7K	-
FP1 C56.C72	5.0K.	
FP-M C16T	0.9K	
FP-M C20R,C20T,C32T	2.7K	
FP-M_C20RC,C20TC,C32TC FP2	16K	- 4
	Turs	-

Expansion memory unit used	Selection
None installed	FP2 16k
The FP2–EM1 or FP2–EM7 is installed	FP2 16k
The FP2-EM2, FP2-EM3, or FP2-EM6 is installed	FP2 32k
FP2SH CPU type	Selection
FP2-C2L	FP2SH 32k
FP2-C2, FP2-C2P	FP2SH 60k
FP2-C3P	FP2SH 120k

After your selection, you can change the PLC type.

Communication Settings

Select the Network type or communication format. In case if RS232C

In case of Ethernet

Reference and the second second		Qarcel
at per	104	Sarce
Use ET-LAN unit		hitializa
Computer		Eete.
Acquire IF eddress automatically		
Paddess 117, 109, 10, 40		Help
Port No: 0 (0, 1025 - 327	67)	
Station No: 1 - 64 >		
Destination		
IP address 192, 168, 10, 206	6	
Port No: 5000 (1 - 52767)		
Station No. 1 - 64)		
mmunication Time-out (Sec)	•	
emection Time-out (Sec)	-	

For more detail, refer to the FPWIN GR software help.

FP2/FP2SH Operation

6.1 FP2 Operation

6.1.1 FP2 RAM and ROM Operations

6.1.1.1 Comparison of RAM and ROM Operations

With the FP2, either RAM operation or ROM operation can be selected for the execution method of the program.

RAM operation: Executes the program written into the internal RAM of the CPU.

ROM operation: Transfers the program stored in the ROM of the expansion memory unit to RAM and executes the program.

Comparison of RAM operation and ROM operation

Item	RAM operation	ROM operation
Items necessary for operation	Nothing in particular since operation is per- formed by the RAM built into the CPU.	Optional expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7)
	Normal maximum number of steps is 16k. With the optional expansion memory unit (FP2–EM2, FP2–EM3 or FP2–EM6) installed, the maximum number of steps is 32k.	ROM with the program written on it
Processes inside the CPU	Program written in RAM is executed when RUN mode is entered.	When the power is turned on, the program in ROM is transferred to RAM, and then executed.
Memory contents backed up by battery	Program System registers Hold type data of operation memory	Hold type data of operation memory (The pro- gram and the system register within ROM are saved without battery.)
Maintenance	Replacement of backup battery is vital	If program does not use hold type data of op- eration memory, then operation without a backup battery is possible.

6.1 FP2 Operation

6.1.1.2 Retaining the Data During Power Outages

For the operation memory, such as that for internal relays and data registers, the data that is set as hold-type memory is backed up by the backup battery.

Note

If the internal relays and data registers are set to be non-hold type, then they will not be saved.

Battery-less operation

During ROM operation, if it is not necessary to retain the internal relays and data registers, then you can set them all to non-hold type and perform operation without a backup battery.

6.1.1.3 Setting the Battery Error Warnings

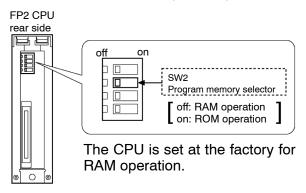
Under normal conditions, if an error occurs with the backup battery, the BATT. and ER-ROR LEDs on the front of the CPU are on for battery error warning. With ROM operation that does not require the backup battery for operation memory, it is possible to set it so that this warning is not given. With this setting, the BATT. and ERROR LEDs do not light.

Method

The programming tool software is required in order for this setting to be effective.

Procedure:

- 1. On the "Option" menu, select "PLC Configuration".
- 2. Select "Initial Switch" tab.


No.4 Mam battery error			Gance Berr R
Clear by Initial Switch	Data Register(D1)	File Register FL	Intele
F Link Relay(L)	P Link Register(LD)		Help
P Leading edge different	el during MC holds the previou	a volie.	
		123310	

3. Check "Alarm battery error" off.

6.2 FP2 RAM Operation

6.2.1 RAM Operation Method

Verify that the operation condition switches (DIP switches) on the back of the FP2 CPU are set for RAM operation (SW2 off).

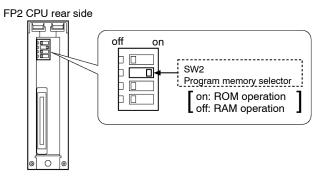
6.2.2 Precautions When Operating the RAM

The contents written to RAM are all saved by the backup battery. Therefore, it is important to be aware of the life of the backup battery.

Using programming tool software, be sure to copy the program in RAM to the hard disk of the host computer or to a floppy disk.

6.3 FP2 ROM Operation

6.3 FP2 ROM Operation


6.3.1 ROM Operation Method

Preparation

Turn off the power supply and remove the CPU from the backplane. Install the expansion memory unit (FP2–EM3, FP2–EM6 or FP2–EM7) to the CPU. Then install the ROM that writes the program to the expansion memory unit. (respectively constant)

Procedure:

1. Set the operation condition switches (DIP switches) on the back of the CPU for ROM operation (SW2 on).

2. Reattach the CPU to the original position on the backplane.

When the power supply is turned on, the program in the ROM is transferred to the internal RAM.

i Note

When the power supply is turned on, the data that was in the RAM will be erased.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

6.3.2 Verifying the ROM Contents in RAM Operation

When the operation condition switches (DIP switch) on the rear side of the CPU is set for RAM operation, the CPU reads the contents of the internal RAM. To check the contents of the ROM, you must first copy the contents to RAM by following the procedure below.

Preparation

Have programming tool software ready for use. Set the CPU to the "PROG." mode.

Procedure:

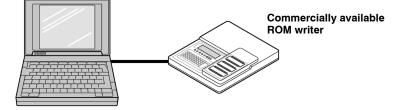
- 1. On the "Online" menu, select "Online Edit Mode".
- 2. On the "Tool" menu, select "ROM&RAM Service".

ROM&RAM Service - Untitle5	X
(ROM -> RAM	Execute
C ROM «- RAM	Close
Transfer the program, system register, etc. stored in the ROM into the internal RAM of PLC.	
	Help

3. Select "ROM --> RAM" and click "Execute" button. The contents of ROM are copied to the internal RAM.

6.4 Writing to ROM

6.4 Writing to ROM

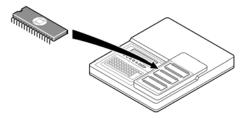

6.4.1 Writing to EPROM Using Programming Tool Software

This method entails using programming tool software at the computer to send the program directly to any commercially available ROM writer and writing the data to the ROM.

Preparation


Connect the commercially available ROM writer to the computer.

Attach the optional memory EPROM (FP2–EM5) in the commercially available ROM writer. Read the program with programming tool software.



Procedure:

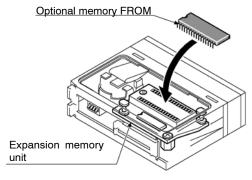
- 1. On the "Option" menu, select "Communication Settings", and set the transmission speed and communication format that matched that for the ROM writer.
- 2. On the "Tool" menu, select "ROM Writer".

3. Select "Write" and "Serial Port" and click "Execute" button. The program is copied to the ROM writer. Write the data to the optional memory EPROM (FP2-EM5) with the commercially available ROM writer. The specification of commercially available ROM writer set to EPROM "M27C1001- 12F1 or equivalent" (SGS-THOMSON MICROELECTRONICS).

6.4 Writing to ROM

6.4.2 Writing to EPROM via FROM

Preparation


Prepare the optional memory FROM (FP2–EM4), the optional memory EPROM (FP2–EM5), and the expansion memory unit (FP2–EM3, FP2–EM6 or FP2–EM7). Also prepare a commercially available ROM writer.

Procedure:

Perform the procedures described in "A" through "D" below. When writing to EPROM, continue on to steps "E".

A. Passing the program


- Pass the program within the CPU. Operations using FPWIN GR On the "File" menu, select "Upload from PLC" and read the program from the PLC. On the "File" menu, select "Save as" and save the program to a disk.
- 2. Turn the power off and remove the CPU from the backplane.
- Install the expansion memory unit (FP2-EM3, FP2-EM6 or FP2-EM7) to the CPU. Attach the optional memory FROM (FP2-EM4) to the expansion memory unit.
 (r section 2.3)

FP2 CPU

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

4. Verify that the SW2 of operation condition switches (DIP switches) on the back of the CPU are set to RAM operation position (off).

- 5. Reattach the CPU to it original position on the backplane.
- B. Clearing the program within the CPU
- Note

If inputting of the program is done without first performing this operation, the contents of the internal RAM of CPU may become improper.

Operations using FPWIN GR

- 1. On the "Online" menu, select "Online Edit Mode".
- 2. On the "Edit" menu, select "Clear Program".

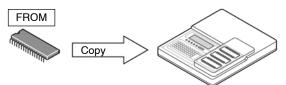
C. Reading a program from disk

Operations using FPWIN GR

On the "File" menu, select "Open" and load the program from disk.

D. Writing the program from the CPU to the optional memory FROM

Operations using FPWIN GR


- 1. On the "Online" menu, select "Online Edit Mode".
- 2. On the "Tool" menu, select "ROM & RAM Service".

ROM&RAM Service - Untitle5	
C ROM -> RAM	Execute
FIDM <- RAM Transfer the program, system register, etc. stored in the internal RAM of PLC into the ROM.	Dose
	Data
	Help


3. Select "ROM <-- RAM" and click "Execute" button.

For information on operating the menus, please check the Help menu.

- E. Writing to the optional memory EPROM with the ROM writer
 - 1. Remove the optional memory FROM from the expansion memory unit and install it in the ROM writer.
 - 2. Copy the contents of the optional memory FROM to the ROM writer.

3. Remove the optional memory FROM and install the optional memory EPROM and write the data to the EPROM.

6.5 FP2SH Operation

6.5.1 Comparison of RAM, ROM, and IC Memory Card Operation

With the FP2SH, the user can select "RAM operation", "ROM operation", or "IC memory card operation" as the method by which programs are to be executed.

RAM operation

Programs written to the RAM in the CPU unit are executed.

ROM operation

With the FP2–C2L or FP2–C2, programs written to the ROM in the expansion memory unit are sent once to the RAM and executed. With the FP2–C2P or FP2–C3P, programs written to the internal FROM are sent once to the RAM and executed.

IC memory card operation (FP2–C2P and FP2–C3P are supported):

Programs written to the IC memory card are sent to the RAM and executed.

Item	RAM operation (SW2: off, SW4: —)	ROM operation (SW2: on, SW4: off)	IC memory card operation (SW2: on, SW4: on)
Items re- quired for operation	None in particular, because the RAM provided as standard in the CPU is used.	With the FP2–C2L and FP2–C2, an optional memory unit and ROM	FP2-C2P or FP2-C3P and IC memory card with the program written to it.
		The FP2–C2P and FP2–C3P are built into the FROM.	
Processing in the CPU	Program in the RAM is executed when the RUN mode is ac- cessed.	When the power supply is turned on, the program in the ROM is sent to the RAM, and the program in the RAM is exe- cuted.	When the power supply is turned on, the program in the IC memory card is sent to the RAM, and the program in the RAM is executed.
Contents of memory backed up by battery in the CPU unit	Programs System registers Hold-type data of operation memory Comment data (FP2-C2L, FP2-C2 only)	Hold-type data of operation memory Comment data (FP2-C2L, FP2-C2 only)	Hold-type data of operation memory
Maintenance	Backup battery needs to be re- placed.	If the program is in the operation memory and does not use the hold-type memory, operation is possible without a battery.	If the program is in the operation memory and does not use the hold-type memory, operation is possible without a battery. With AIC52000, periodic charg- ing or replacement is necessary. Charging is done by inserting it
			with AFP2209, the replacement of memory backup battery is necessary.

6.5 FP2SH Operation

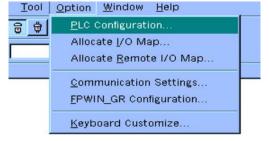
6.5.2 Retaining Data If the Power Fails

Operation Memory Backup

Of the internal relays, data registers and other operation memories, data specified as hold-type data in the system registers is backed up by the backup battery.

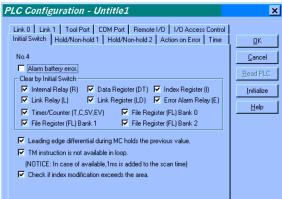
Setting the Alarm Battery Error

Normally, if a problem occurs with the backup battery, the "BATT." and "ERROR" LEDs on the front panel of the CPU light, to warn of a battery error.

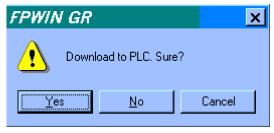

During ROM operation, and when no operation memory backup is required, the alarm battery error can be set to "off". If this setting is entered, the "BATT." and "ERROR" LEDs do not light.

Method

The FPWIN GR tool software is used.

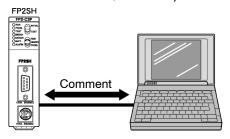

Procedure:

1. On the "Option" menu, select "PLC Configuration...".

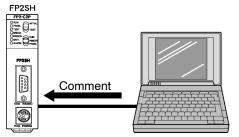

The "PLC Configuration" window is opened.

- 2. Open the "Initial Switch" tab.
- 3. Delete the check from the "Alarm battery error" check box.

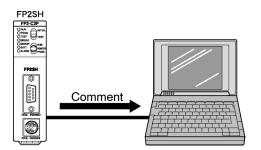
Click on "OK" to close the window.


4. The data is downloaded to the PLC.

6.5 FP2SH Operation


6.5.3 Comment Function

The FP2SH is equipped with a function that allows program comments (I/O comments, block comments, remarks) to be stored.

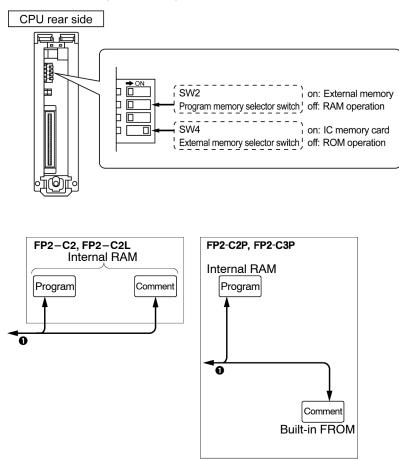


Туре	FP2-C2L, FP2-C2	FP2-C2P, FP2-C3P
Storage memory	Internal SRAM	Internal FROM
Storage capacity	128 KB	512 KB
Backup	Backup required	Backup not required

The "Download to PLC" function in the FPWIN GR can be used to write programs and comments. Check to make sure that a check mark has been placed by "Program and Comment" under "Program Access Mode" on the "<u>F</u>PWIN_GR Configuration..." menu of the FPWIN GR.

The "Download to PLC" function in the FPWIN GR can be used to automatically store programs in the FPWIN GR to the internal RAM, and to automatically store comments to the comment memory.

Selecting the "Upload from PLC" function lets you load programs in the internal RAM and data in the comment memory into the FPWIN GR.


Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

6.6 FP2SH RAM Operation

6.6 FP2SH RAM Operation

6.6.1 RAM Operation Method

Check to make sure the DIP switches on the back of the CPU have been set to the RAM operation side (SW2 is off).

Procedure:

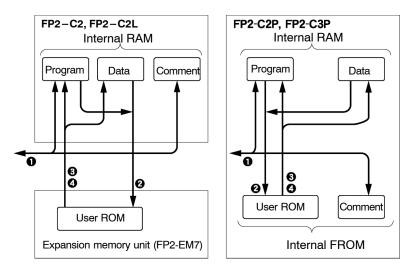
- 1. Use the tool software to write programs and comments. When doing this, programs are stored in the internal RAM in the FP2SH, and comments are stored in the internal RAM if the FP2-C2 is being used, and in the internal FROM if the FP2-C2P or FP2-C3P is being used.
- 2. RAM operation begins when the PLC is switched to the RUN mode.

6.6 FP2SH RAM Operation

6.6.2 Precautions When Operating the RAM

All contents written to the RAM are retained by the backup battery. Please pay close attention to the service life of the backup battery.

🔊 Note


It is recommended to save the programs and data within the CPU in a PC in case that it requires time for the replacement.

6.7 FP2SH ROM Operation

6.7.1 ROM Operation Function

The FP2SH is equipped with a function that causes programs, or programs and data, to be stored in a ROM (FROM or EPROM) that does not require backing up. This function also causes operations to be executed based on the contents of that ROM.

Туре	FP2-C2L, FP2-C2	FP2-C2P, FP2-C3P
Storage memory	FROM or EPROM (optional)	Internal FROM
Remark	Memory unit (AFP2208 or FP2–EM7) With the memory unit (FP2–EM7), the master memory (AFP5208) or memory (AFP2509) is required.	FROM is not detachable.

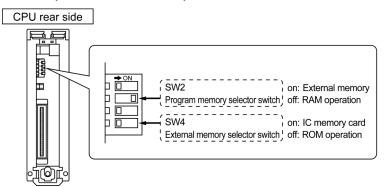
1 The "Download to PLC" function in the FPWIN GR can be used to write programs and comments.

In both cases, programs are stored in the internal RAM of the FP2SH. If the FP2-C2 or FP2-C2L is being used, comments are stored in the internal SRAM. They are not written to the memory unit (AFP2208 or FP2-EM7). If the FP2-C2P or FP2-C3P is being used, comments are stored in the comment memory of internal F-ROM.

- (2) Programs and data in the internal RAM of the FP2SH are transferred to the user ROM with the "RAM \rightarrow ROM transfer" function in the FPWIN GR.
- ③ Programs and data in the user ROM are transferred to the internal RAM of the FP2SH with the "ROM → RAM transfer" function in the FPWIN GR.
- (4) If the power supply is turned on with DIP switch SW2 set to "on" (SW4: off), programs and data stored in the user ROM are automatically sent to the internal RAM in the FP2SH.

6.7 FP2SH ROM Operation

6.7.2 ROM Operation Method


Preparation

Turn off the power supply and detach the CPU.

If using the FP2–C2, insert the expansion memory unit (FP2–EM7) into the CPU, and install the master memory (AFP5208) or the memory (AFP5209) containing the programs.

Procedure:

1. Set the DIP switches on the back of the CPU to ROM operation (SW2: on, SW4: off).

2. Return the CPU to its original position on the backplane. When the power supply is turned on, the contents of the ROM will be transferred to the internal RAM.

🔊 Note

Be careful when switching the DIP switches on the back of the CPU. When the power supply is turned on, any contents stored in the RAM up to that point will be lost.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

6.7.3 Precautions When Operating the ROM

Precautions Before Turning On the Power Supply

At the point when the ROM is installed, be aware that operation differs as described below, depending on the setting of the DIP switches on the back of the CPU.

If the power supply is turned on when DIP switch SW2 is on and SW4 is off:

When the power supply is turned on, the contents of the memory (ROM) are automatically transferred to the internal RAM and written there. Be aware that the previous contents of the RAM will be lost at that point.

If the power supply is turned on when DIP switch SW2 is off:

Even if the memory (ROM) is installed, the contents of the internal RAM can be read using the programming tools.

Consequently, to confirm the contents of the memory (ROM), the contents of the ROM should be sent to the internal RAM.

To continue using ROM operation, turn off the power supply, and set DIP switch SW2 to the "on" position and SW4 to the "off" position. Then turn the power supply on again.

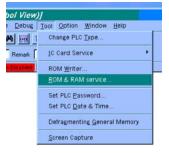
6.7 FP2SH ROM Operation

6.7.4 Checking the ROM Contents While Using RAM Operation

When the DIP switches on the back of the CPU have been set to the RAM operation side, the CPU reads the contents of the internal RAM in that state. To check the contents (programs) of the ROM, use the procedure described below to send the data to the RAM.

Preparation

Set the CPU in the PROG. mode.

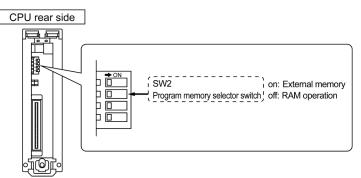

Procedure:

1. Select "Online Edit Mode" on the "Online" menu.

The system goes online, and online monitoring begins automatically. The 😰 icon on the tool bar can also be used to do this.

2. Select "<u>R</u>OM & RAM service..." on the "<u>T</u>ool" menu.

The "ROM & RAM Service" window opens.

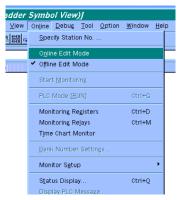

ervice - Untitle2 🛛 🗙
Execute
Close
, system register, M or IC card into PLC. Help
10.

3. The "ROM \rightarrow RAM" is executed.

Select "ROM \rightarrow RAM" and click on the "<u>E</u>xecute" button. The contents of the ROM are sent to the internal RAM.

6.7.5 Sending Data from the RAM to the FROM

The "RAM \rightarrow ROM Transfer" function in the FPWIN GR is used to send programs and data in the CPU to the ROM. The data range can be specified as any of the following fields: WL, WR, DT, FL, SV, EV, and LD.



Preparation

Set the CPU in the PROG. mode.

Procedure:

1. Select "Online Edit Mode" on the "Online" menu.

The system goes online, and online monitoring begins automatically. The 💇 icon on the tool bar can also be used to do this.

2. Select "<u>R</u>OM & RAM service..." on the "<u>T</u>ool" menu.

Bemark	IC Card Service	•			
Disabled	ROM Writer				
	BOM & RAM service				
	Set PLC Password				
	Set PLC Date & Time				
	Defragmenting General Memory				
	Screen Capture				

6.7 FP2SH ROM Operation

The "ROM & RAM Service" window opens.

3. Select "ROM ← RAM" and press the "Data" button.

🔍 Rom> Ram	Execute
ROM < RAM	Close
Transfer the program, system register, etc. stored in the internal RAM of PLC	Data

The "Data Register Range Setup" window opens.

DT D	010-	102291	<u>a</u> k
SV D EV D LD D WL D	010 010 010 010	3071 3071 8447 638	Eancel Help

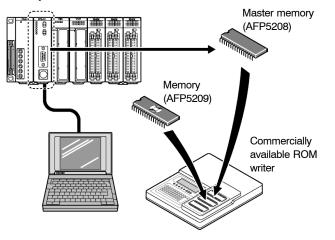
 Select the data and specify the range. Clicking on the check box in front of the data type specifies whether or not that data can be sent. Data marked with a check mark can be sent. To specify the range, double-click on the list.

Storage Capacity of User ROM

The potential storage capacity of user ROM is: Number of program step Fixed value (2k words)

+ Data capacity

Total number of words


The largest total value of the above is 128k words.

Precautions for Comment Storage

Editing of the program cannot be done during ROM operation. Transfer the data after set the DIP switches SW2 to off.

6.7.6 Writing Data to the ROM (AFP5209) (only the FP2–C2 can be installed)

The master memory is a flash ROM, and data can be written to it when it is installed in the CPU. However, data can only be written when the memory is an EPROM and when a commercially available ROM writer is used.

Procedure of Writing to Memory (AFP5209) Using Master Memory (AFP5208)

- 1. Turn the power off and install the expansion memory unit (FP2–EM7) installed with the master memory (AFP5208) to CPU. Turn off the DIP switches SW2 of CPU.
- 2. Verify that the PROG. mode has activated and turn the power on.
- 3. Using the "RAM → ROM" function of the FPWIN GR tool software, transfer the contents of the internal RAM to master memory.
- 4. Turn the power off and detach the master memory from the CPU. Attach it to the commercially available ROM writer.
- Transfer the contents of master memory to the commercially available ROM writer. The ROM writer settings should be specified as those for the M27C2001 (SGS-TOMSON).
- 6. Remove the master memory (AFP5208), install the memory (AFP5209), and write the data. The ROM writer settings should be specified as those for the M27C2001 (SGS-TOMSON).

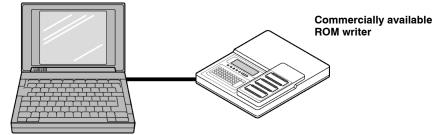
next page

🔊 Notes

- Refer to the commercially available ROM writer manual regarding the ROM IC type setting and writing method. If a passwords is on the CPU, it is possible to create a password for master memory.
- When writing the contents of the FP2SH internal RAM to master memory, be sure to verify that the DIP switches SW2 is off position before turning the power on.

Notes

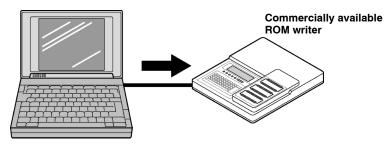
- 1) The above explanation describes the case where the memory unit is used in combination with F-ROM and EP-ROM. As the nonvolatile memory has been implemented in the memory unit (Model number AFP2208), a commercial ROM writer cannot be used for writing.
- 2) The parts for the optional memory to be used differ depending on FP2 or FP2SH.


6.7 FP2SH ROM Operation

6.7.7 Writing Data to the ROM: Using the FPWIN GR

With this method, programs are sent directly from the personal computer (FPWIN GR tool software) to the ROM writer, and are written to the ROM. With the FP2SH, this method can be used only when the expansion memory unit (FP2–EM7) is used in combination with the FP2–C2 CPU.

Preparation

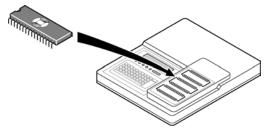

Connect the personal computer and the ROM writer.

Procedure:

- 1. On the "<u>T</u>ool" menu of the FPWIN GR tool software, select "ROM <u>W</u>riter" to display the dialog box for the ROM writer.
- 2. Specify "Write" as the "Operation Method" and "Serial Port" as the "Input/Output Destination", and click on "<u>Execute</u>".

The program is sent to the ROM writer.

🔊 Note


In the ROM writer settings, the flow control (X–on/off) should be turned on.

next page

6.7 FP2SH ROM Operation

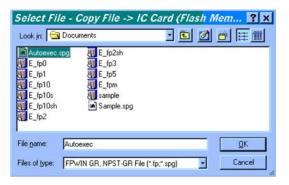
3. Install the memory in the commercially available ROM writer and write the data. The ROM writer settings should be specified as those

for the M27C2001 (SGS-TOMSON).

🔊 Notes

- Refer to the commercially available ROM writer manual regarding the ROM IC type setting and writing method.
- It is possible to create a password for master memory.

6.8 FP2SH IC Memory Card Operation (for FP2–C2P/ FP2–C3P)


6.8.1 Operating Using the IC Memory Card

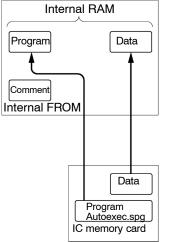
IC memory cards can be used to back up programs and as operation memories, but they can also be used for operation, with programs that have been written to the card.

Writing Programs to the Card

The "Copy File" menu in the tool software is used to write programs to a card. When this is used to transfer programs automatically, a file created ahead of time must be converted to the file to be used for automatic transfer.

The converted file can be confirmed in the software, under the file name "Autoexec.spg".

If the card is an SRAM type, the "<u>R</u>OM & RAM service..." menu and "<u>I</u>C Card Service" menu can also be used.


6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P)

Executing Programs

There are two ways to execute programs written on IC memory cards, described below.

(1) **Programs are automatically transferred when the power supply is turned on.** If the power supply is turned on when the DIP switches on the back of the CPU are set so that both SW2 and SW4 are on, the "Autoexec.spg" file stored in the IC memory card is sent to the internal RAM. When the mode is switched to RUN, operation begins in accordance with the contents of that file.

FP2SH (FP2-C2P, FP2-C3P)

② Sending programs from the "<u>R</u>OM & RAM service..." menu

If the power supply is turned on when the DIP switches on the back of the CPU are set so that SW2 is off and SW4 is on, executing the "ROM \rightarrow RAM" operation causes the "Autoexec.spg" file stored in the IC memory card to be sent to the internal RAM. When the mode is switched to RUN, operation begins in accordance with the contents of that file.

Before the "ROM \rightarrow RAM" menu is executed, any contents loaded with the tool become the contents of the internal RAM.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

6.8.2 Creating Files for Automatically Run Programs

In order to automatically execute programs stored on the card when the power supply is turned on, the following procedure must be used to convert the programs to programs that will run automatically.

Procedure:

- On the FPWIN GR tool software menu, select the following: "<u>T</u>ool" ∋ "<u>I</u>C Card Service" ∋ "Aut<u>o</u>-Run File Conversion...".
- 2. Select the program to be started up automatically.

A DESCRIPTION OF TAXABLE	File Conversion - Disonetti	Select a File to Co?	×
Figure.		D.	1
Film of part	FRANK GRUTHE F. Spill	E Canal	1

3. Select the destination to which the program is to be stored after it is converted.

🖸 🖸 🖻 🗉

4. An auto run file is created, and a confirmation message displayed.

The auto run file created in this procedure can be read using the various IC card menus. The following shows the screen displayed for "Copy File to IC Card (Flash Memory)".

Look in: 🔄 Doci	uments	· 🗈 🗹	
Autoexec.tpg E_fp0 E_fp1 E_fp10 E_fp10 E_fp10s E_fp10sh E_fp2	E_fp2sh E_fp3 E_fp5 E_fp5 E_fp5 E_fpm E_fpm E_sample Sample.spg		
File name: Auto	bexec		<u>O</u> K
	and the second	e (".fp;".spg)	Cancel

6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P)

6.8.3 How the IC Memory Card is Operated

Turn off the power supply, and remove the CPU.

Have the IC memory card ready that contains programs already written to it.

Procedure:

- 1. Set the DIP switches on the back of the CPU for IC memory card operation (SW2: on, SW4: on).
- 2. Install the CPU back in its original position on the backplane.

If the power supply is switched on in the RUN mode, the program on the IC memory card called "Autoexec.spg" is sent to the internal RAM. The program is transferred at the point when the power supply is turned on.

i Note

If the power supply is turned on with the "Autoexec.spg" file on the IC memory card, all contents of the RAM up to that point are lost.

6.8.4 Transferring Data From the RAM to the IC Memory Card

The "RAM \rightarrow ROM Transfer" function in the FPWIN GR tool software is used to send programs and data in the CPU to an SRAM type IC memory card. The data range can be specified as any of the following fields: WL, WR, DT, FL, SV, EV, and LD. (DIP switch settings: SW2: off, SW4: on)

FP2SH (FP2-C2P, FP2-C3P)

Note

This method can only be used with an SRAM type IC memory card.

6.8 FP2SH IC Memory Card Operation (for FP2-C2P/FP2-C3P)

IC Memory Card

7.1 Using the IC Memory Card

7.1 Using the IC Memory Card

7.1.1 Types of IC Memory Cards

There are two types of IC memory cards, an SRAM type and an FROM type. The user can select the appropriate type for the application at hand.

Туре	Memory capacity	Part number
FROM type	2MB	AIC50020
SRAM type	2MB	AIC52000
		AFP2209

FROM type

No battery backup is required, so this type is ideal for saving programs.

Programs are written using the "Copy File to IC Card..." function in the FPWIN GR. When used as an expansion memory, this type is a read–only card. The "Data Editor" is used to write data.

SRAM type

This is ideal for use in expanding the data memory area. When used as an expansion memory, the F13(ICWT) instruction and F12(ICRD) instruction of the sequence program are used to write and read data automatically.

About AFP2209

An interchangeable lithium battery is used.

When you use for the first time, install the battery included.

The battery voltage of IC card is detected only once when the CPU unit is powered on. An error will not be determined if the battery is replaced during power-on.

About AIC52000

An internal secondary battery is provided for backup purposes.

The data on the SRAM type IC memory card is backed up by a chargeable secondary battery.

When the card is first inserted in the CPU and the power supply is turned on, the battery is not charged, so an error reading "IC card battery error" occurs. Before using the card for the first time, always insert it in the CPU and leave it for at least 24 hours before turning on the power supply. (This fully charges the battery.)

Memory backup time (Ambient temperature of 25 °C)

Model No.	Memory retention time	The battery life
AFP2209	Approx. 3 years or more	
AIC52000	3 months	If operated at 25 °C for 12 hours a day with the power supply off, : Approx. 10 years The service life is shorter at high temperatures, or if the power
		supply is left off or long periods of time.

7.1 Using the IC Memory Card

7.1.2 Using the IC Memory Card

The IC memory card is available as an optional memory for the FP2–C2P/FP2–C3P. (It cannot be used with the FP2–C2.)

IC memory cards can be used for two types of applications: saving programs and expanding the data memory area. Also, a single IC memory card can be used in the following three ways:

Only for saving programs

Only for expanding the data memory area

For both saving programs and expanding the data memory area

Using the Card to Save Programs

Sequence programs can be written to IC memory cards and saved on them. The IC memory card with the program written to it is then used as a program memory.

If the FPWIN GR or a similar tool is used to change the file name to "Autoexec.spg", as an auto run file, and the file is copied or the program is transferred, and if the DIP switches on the CPU are set so that SW2 and SW4 are both on, the program can be automatically transferred to the RAM at the same time that the power supply is turned on.

If the **F14 (PRGRD)** instruction is executed in the RUN mode, a program can be substituted for another program in any desired file.

If an SRAM type of IC memory card is being used, the "<u>R</u>OM & RAM service" in the FPWIN GR can be used to copy the contents of the RAM in the CPU to the IC memory card.

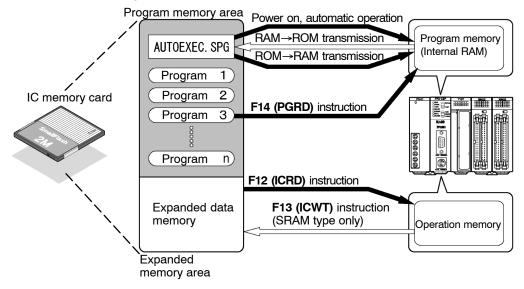
If the card is being used as a program memory, there are four ways to read programs from the card, described below:

Programs can be automatically read when the power supply is turned on.

Programs can be read using the "ROM & RAM service" menu on the FPWIN GR.

Programs can be read using the "Upload Program from IC Card..." menu on the FPWIN GR.

The F14 (PRGRD) instruction of the sequence program can be used to read programs.


Using the Card to Expand the Data Memory Area

Data written to data registers and other destinations is written to the IC memory card. When the card is used in this way, the IC memory card can be used as an expanded memory area that lets data be written and read using the sequence program.

Data is written using the **F13 (ICWT)** instruction of the sequence program, and is read from the IC memory card using the **F12 (ICRD)** instruction.

The FROM type of card can only be used for reading data.

How the IC memory card is used

7.2 Formatting and Erasing

7.2 Formatting and Erasing

7.2.1 Program Memory Field and Expanded Memory Field

The area in which sequence programs are stored is called the "program field", and the area used to expand the data memory is called the "expanded memory field". The IC memory card must be divided into separate fields, depending on how it is being used.

Using the Card Only as a Program Memory

When using the card only to save programs, the entire IC memory card must be designated as a "program memory field".

FROM type

Procedure:

- 1. On the "<u>T</u>ool" menu, choose "<u>I</u>C Card Service" and then "<u>E</u>rase IC Card..." to erase the entire field.
- 2. On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "Copy File <u>to</u> IC Card..." and set the format size to the maximum size. Then copy the program from a floppy disk or the hard disk, to the IC memory card.

SRAM type

Procedure:

On the "<u>T</u>ool" menu, choose "<u>I</u>C Card Service" and then "<u>F</u>ormat IC Card..." to format the entire field.

Using the Card Only as a Data Memory Area

When using the card only to expand the data memory area, the entire IC memory card must be designated as an "expanded memory field".

FROM type

Procedure:

- 1. On the "<u>T</u>ool" menu, choose "<u>I</u>C Card Service" and then "<u>E</u>rase IC Card..." to erase the entire field.
- 2. Using the "Data Editor" supplied with the FPWIN GR, run the "<u>D</u>ownload to PLC" function, and transfer the data.

SRAM type Procedure:

> On the "<u>T</u>ool" menu, choose "<u>I</u>C Card Service" and then "<u>E</u>rase IC Card..." to erase the entire field.

Using Different Sections of the Card as a Program Memory Field and Expanded Memory Field

Any desired settings may be entered for the field to be formatted. Of the entire field, any part of the field not formatted (program memory field) is used to expand the memory field.

FROM type

Procedure:

- 1. On the "<u>T</u>ool" menu, choose "<u>I</u>C Card Service" and then "<u>E</u>rase IC Card..." to erase the entire field.
- 2. On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "Copy File <u>t</u>o IC Card..." to specify the format size. Then copy the program from a floppy disk or the hard disk, to the IC memory card.
- 3. Boot the "Data Editor".
- 4. In the "Edit IC Memory Card Data" mode, create a file, or open an existing file.
- 5. On the "<u>File</u>" menu, select "<u>D</u>ownload to PLC", and transfer the data.

SRAM type Procedure:

> On the "<u>T</u>ool" menu, choose "<u>I</u>C Card Service" and then "<u>F</u>ormat IC Card...". Specify the necessary segment as a program memory, and format it.

7.2 Formatting and Erasing

7.2.2 Procedure for Formatting the IC Memory Card

Formatting an FROM type

When using this type, formatting is done at the same time that the program on the disk is copied to the IC memory card, with the FPWIN GR.

Procedure:

1. Boot the "Copy File to IC Card..." function.

ol Option Window Help	
Change PLC Type	And the second sec
IC Card Service	Upload Progam from IC Card
ROM Writer	Download Program to IC Card
ROM & RAM service	Copy File from IC Card
	Copy File to IC Card
Set PLC Password	Delete File
Set PLC Date & Time	Rename File
Defragmenting General Memory	Change File <u>A</u> ttribute Erase IC Card
<u>S</u> creen Capture	Eormat IC Card
	Auto-Run File Conversion

On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "Copy File <u>to</u> IC Card...". First, the "Specify Format" window opens.

Specify Format - Copy File -> IC Card (Fl.	ash 🗴
Capacity	2048 KB
Format Size 64K (64K-2048 KBytes)	
IC Card Type FLASH	FLASH 2048KB
DOS Area Capacity 64KB Extended Memory Area	
Extended Memory Capacity 992KW	
IC Card All Capacity - Format Size = Extended Memory Capacity NOTICE: This operation erases all data in IC card.	
<u>Execute</u>	<u>H</u> elp

🖛 next page

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

 Specifying and running the format size Press the button next to "Format Size" to select the size.

Next, click on the " \underline{E} xecute" button to open the "Select File" window.

-	- Copy File -> IC		and the second se
Look in: D Autoexec.sp E_fp0 E_fp1 E_fp1 E_fp10 E_fp10s E_fp10sh E_fp10sh			
	Nutoexec PWIN GR, NPST-GR File	(*.fp;*.spg)	<u>D</u> K Cancel

3. Selecting the file to be copied

Select the file to be copied to the IC memory card, and click on "<u>O</u>K".

The IC memory card is formatted, and the file is written to the card.

7.2 Formatting and Erasing

Formatting the SRAM type

With this type of card, the IC memory card must be formatted before the program is saved to it, and a "program memory field" must be assured to which the program will be saved. This section explains how this is done using the FPWIN GR.

Procedure:

1. Booting the "<u>F</u>ormat IC Card..." function.

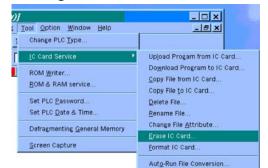
)]	
Tool Option Window Help	_ <u>- 18 × </u>
Change PLC <u>T</u> ype	
LC Card Service	Upload Progam from IC Card
ROM Writer	Do <u>w</u> nload Program to IC Card
ROM & RAM service	Copy File from IC Card
	Copy File to IC Card
Set PLC Password	<u>D</u> elete File
Set PLC <u>D</u> ate & Time	<u>R</u> ename File
Defragmenting General Memory	Change File <u>A</u> ttribute
Dendementing <u>G</u> eneral Memory	Erase IC Card
<u>S</u> creen Capture	Eormat IC Card
	Aut <u>o</u> -Run File Conversion

On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "<u>F</u>ormat IC Card...". The "Format IC Card" window

ormat Size S4K • [64]		2048 KE
Status Message		2
C Card Type SRAM	DOS Area	SRAM 2048KB
DDS Area Capacity 64KB	5	
Extended Memory Capacity	Extended Memory Area	
	Extended Memory Capacity	

next page

Specifying and running the format size
 Press the button next to "Format Size" to select the


Next, click on the "<u>E</u>xecute" button to format the card at the specified size.

7.2.3 Procedure for Erasing the IC Memory Card


For both the SRAM type and the FROM type, before the IC memory card can be used as an expanded memory, any data already on the card must be erased, and an area must be assured as the "expanded memory field". The procedure is described here using the FPWIN GR.

Procedure:

1. Booting the "Erase IC Card..." function

On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "<u>E</u>rase IC Card...". The "Erase IC Card" window opens.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

2. Erasing the card

Clicking on the "<u>E</u>xecute" button starts erasing the data from the card. It takes approximately 1 minute to erase all the data.

*Once erasing the data starts, the "IC memory card access LED" on the CPU unit lights up. The LED is turned off on completion of erasing.

7.2.4 Data Storage Capacity of IC Memory Card

When storing a program or data in the IC memory card, the data storage capacity is as follows.

Program file (*.fp, *.SPG)

+ FAT area (see note)

Total number of bytes

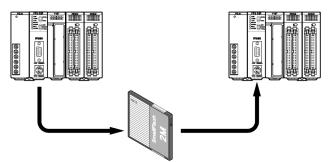
Keep the total number of bytes for the files given above less than the format capacity.

Note

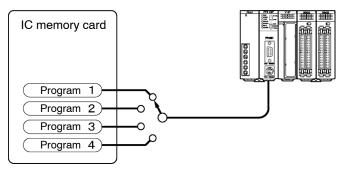
The I/O comment capacity changes according to the size of the statements.

FAT area:

256KB format = 5.5KB 512KB format = 6KB 1MB format = 9.5KB 2MB format = 14.5KB


Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

7.3 For Use as Program Memory


7.3 For Use as Program Memory

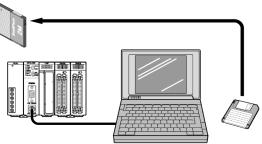
7.3.1 Writing the Program

By saving the program to the IC memory card, it is simple to create a backup or transfer it to another CPU.

Furthermore, by saving more than one program, switching between the programs can be done as necessary.

Writing Programs

There are three ways to write programs to the IC memory card:

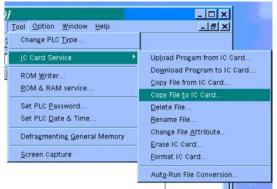

Use the "Copy File to IC Card..." function in the FPWIN GR to write a program saved on a disk directly to the IC memory card. All types of cards can be used for this.

Write programs created with the FPWIN GR directly to the IC memory card. This can only be done with SRAM types. (*)

Write programs in the RAM of the CPU to the IC memory card. This can only be done with SRAM types. (*)

*When writing programs to the FROM type of card, the program should be saved to a disk before using the "Copy File to IC Card..." function of the FPWIN GR to write the program to the IC memory card.

Method 1: Use the "Copy File to IC Card..." function in the FPWIN GR, directly write the program that is saved on the disk to the IC memory card. (For all types of IC memory card)

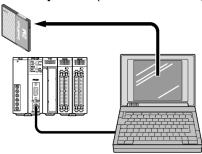

Procedure:

For FROM types

See section 7.2.2, "Procedure for Formatting the IC Memory Card".

For SRAM types

 Boot the "Copy File to IC Card..." function. On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "Copy File to IC Card...".



The "Select File" window opens.

Look jn: 🔂 Do	cuments	· 🗈 🛛	2 🖻	÷:: 🏢
Autoexec. spg E_fp0 E_fp1 E_fp10 E_fp10s E_fp10s E_fp10sh E_fp2	E_fp2sh E_fp3 E_fp5 E_fp5 E_fpm E_fpm M_sample Sample.spg			
_	toexec WIN GR, NPST-GR File I	(*.fp;*.spg)		<u>O</u> K Cancel

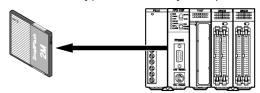
next page

- Selecting the file to be copied Select the file to be copied to the IC memory card, and click on "<u>O</u>K".
 Writing of the file to the IC memory card begins, and the "List of File Copy Results" is displayed.
- **Method 2:** Directly write the program that is made by the FPWIN GR to the IC memory card. (For the SRAM type IC memory card)

Procedure:

1. Booting the "Do<u>w</u>nload Program to IC Card..." function On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "Do<u>w</u>nload Program to IC Card...".

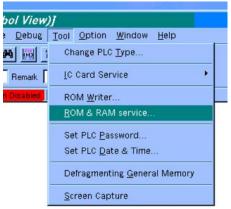
J	
<u>Tool</u> Option <u>Window</u> Help Change PLC <u>Type</u>	<u>_8×</u>
LC Card Service	Upload Progam from IC Card
ROM <u>W</u> riter <u>R</u> OM & RAM service	Download Program to IC Card Copy File from IC Card Copy File to IC Card
Set PLC <u>P</u> assword Set PLC <u>D</u> ate & Time	<u>D</u> elete File <u>R</u> ename File
Defragmenting <u>G</u> eneral Memory	Change File <u>A</u> ttribute <u>E</u> rase IC Card
Screen Capture	– <u>F</u> ormat IC Card
	Auto-Run File Conversion



IC Card Type SRAM Free S0416 byte File Wowndon Type: C FPWIN SPI (With Connent) C AutoPiun File (Without Connent) File Name FUTCOLIC Tile Lane	Save Program	n to IC Card - [Untitle1	×
File Name PATTOCIEC	and the second se	SRAM	Fine 50	416 Dyte
Tile	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O	and the second second	Auto-Filen File (Without C	onmeri)
Tán Autras	Fie Name	TODEC		
Autor	Téc.			
	Autor			

2.	Setting the file information
	Enter the "File Name" (name of the file to which the pro-
	gram is to be written), the "Title", and the "Author"
	(name of the person creating the file).
	The file name must be within 8 characters.
	Programs can be written even if the "Title" and the "Au-
	thor" are not specified.
	Check to make sure the necessary items have been en-
	tered, and click on the " <u>E</u> xecute" button.
	Writing of the program to the IC memory card begins.

🔊 Note


To have the program being sent executed automatically, select "Auto-Run File (Without Comment)" for the "Type" of "File Information". **Method 3:** Write a program on the RAM of the CPU into the IC memory card. (For the SRAM type IC memory card)


By performing the following procedures, the data on the RAM of the CPU is written to the IC memory card and named "Autoexec.spg".

Procedure:

1. Booting the "<u>R</u>OM & RAM service..." function On the "<u>T</u>ool" menu, select "<u>R</u>OM & RAM service...".

The "ROM & RAM Service" window opens.

 Executing the "ROM ← RAM" transfer function Select "ROM ← RAM", and click on the "<u>E</u>xecute" button.

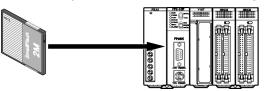
ROM&RAM Service - Until	le2 ×
C ROM> RAM	Execute
ROM < RAM	<u>C</u> lose
Transfer the program, system register, etc. stored in the internal RAM of PLC	Data
into the ROM or IC card.	Help

7.3 For Use as Program Memory

7.3.2 Reading the Program

There are four methods of reading the program saved in the IC memory card.

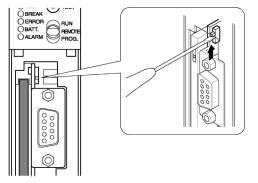
Read the program on the IC memory card and directly transfer it into the internal RAM of the CPU at the same time that the power is turned on.


Use the programming tool to read the program of the IC memory card and directly transfer it into the internal RAM of the CPU.

Use the "<u>C</u>opy File from IC Card..." of the FPWIN GR, and select one of the programs saved in the IC memory card and read it to the FPWIN GR (memory of personal computer).

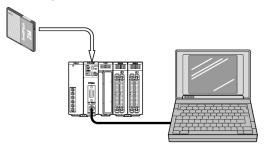
Use the **F14 (PGRD)** instruction to read the program from the IC memory card, and directly transfer it into the internal RAM of the CPU.

Method 1: Read the program on the IC memory card and directly transfer it into the internal RAM of the CPU at the same time that the power is turned on.


By just turning on the power of CPU, the device automatically reads the program of the IC memory card and transfers the program to the internal RAM of the CPU.

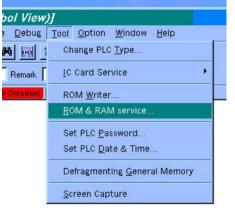
The target of automatic reading is the program named "Autoexec.spg".

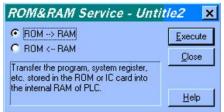
Procedure:


1. While the power is turned off, set the DIP switches SW2 and SW4 on the back of the CPU to on, and set the IC memory card access enable switch to on position.

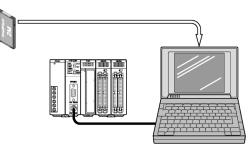
2. Turn on the CPU.

Method 2: Use the programming tool to read the program of the IC memory card and directly transfer it into the internal RAM of the CPU.


With simple operation of the programming tool, reads the program saved on the IC memory card, and transfer it to the internal RAM of the CPU.


The target of automatic reading is the program named "Autoexec.spg".

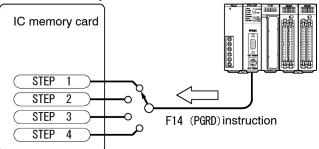
Procedure:


 Booting the "<u>R</u>OM & RAM service..." function On the "<u>T</u>ool" menu, select "<u>R</u>OM & RAM service..."

The "ROM & RAM Service" window opens.

 Executing the "ROM → RAM" transfer function Select "ROM → RAM", and click on the "<u>E</u>xecute" button. **Method 3:** Use the "Upload Program from IC Card..." of the FPWIN GR, and select one of the programs saved in the IC memory card and read it to the FPWIN GR (memory of personal computer).

Procedure:


1. Booting the "Upload Program from IC Card..." function On the "<u>T</u>ool" menu, select "<u>I</u>C Card Service" and then "Upload Program from IC Card...".

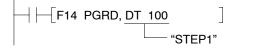
v)]	_ 🗆 ×
g Tool Option Window Help	<u>_ 8×</u>
IC Card Service ROM Writer ROM & RAM service	Upload Progam from IC Card Download Program to IC Card Copy File from IC Card
Set PLC <u>P</u> assword Set PLC <u>D</u> ate & Time	Copy File <u>t</u> o IC Card Delete File <u>R</u> ename File
Defragmenting <u>G</u> eneral Memory Screen Capture	Change File <u>A</u> ttribute <u>E</u> rase IC Card Format IC Card
	Auto-Run File Conversion

The "IC Card File List" is displayed.

C Card Fi	ile List[Read	Program] - Untitle1		
C Card Type	SRAM			Free Spa	ace: 51200 B
File Name	Title		Type of File	Date	Author
TEST1.FP	sample1		FPWIN GR	99-11-28	Matsushita
TEST2.FP	sample2		FPWIN GR	99-11-28	Matsushita
<u>E</u> xecute	Delete	Rename	Change Attribute	<u></u> lose	Help

 Selecting the file to be read Select the file to be read from the "IC Card File List", and click on the "<u>E</u>xecute" button. Reading of the program begins. Method 4: Use the F14 (PGRD) instruction to read the program from the IC memory card and directly transfer it into the internal RAM of the CPU.

By first saving the programs you desire on the IC memory card, you can use the **F14** (**PGRD**) instruction in the program, to switch a program while in the RUN mode (while in operation).


The following details the describe the program after executing **F14 (PGRD)** instruction. The program will continue executing until the **END** instruction is executed.

The CPU enters the PROG. mode and the program is read from the IC memory card and transfer to the internal RAM of the CPU.

The CPU automatically switches to the RUN mode, and the new program executes.

Example:

With F14 (PGRD) instruction, specify a saved file name by the FPWIN GR to call up the program of from IC memory card.

For the program above, the contents "STEP 1" stored in DT100 is the file name used to call up the program.

To store the program name to registers such as DT100, you can write it with alphanumeric code using **F0 (MV)** or **F1 (DMV)** instruction, or you can write it with ASCII conversion using **F95 (ASC)** instruction. For more details, refer to the programming manual.

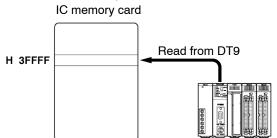
- There are dangers involved when switching programs while in the RUN mode. Carefully read the section regarding the F14 (PGRD) instruction in the programming manual.
- Only files saved with the .spg extension are programs that can be read using the F14 (PGRD) instruction.

7.4 For Use as Expansion Memory

7.4 For Use as Expansion Memory

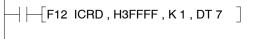
Outline of Expansion Memory

The expansion memory area is an independent area from the internal memory of the CPU that stores word data. Use the **F12 (ICRD)** and **F13 (ICWT)** instructions to read and write data to this area. Below are some of the things that you can do by using the expansion memory area.

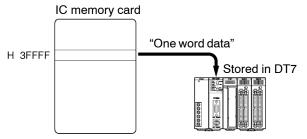

1) As reading and writing are easily done using high-level instructions, you can use the expansion memory as external memory for the CPU.

Writing (for SRAM type)

Use the **F13 (ICWT)** instruction to transfer the word data stored in the data register of the CPU to the IC memory card.

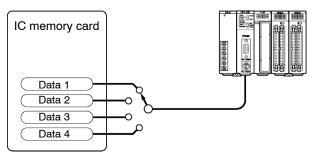

With the above program, after the constant K100 is stored in DT9, **F13 (ICWT)** instruction is used to write one word of data (K100) from the beginning of DT9 to the address H3FFFF of the IC memory card. For more details, refer to the programming manual.

With the FROM type, the "Data Editor" is used to write programs.



Reading

Use the **F12 (ICRD)** instruction to transfer the word data stored on the IC memory card to the data register of the CPU.



The above program reads a one word data from the address H3FFFF of the IC memory card to DT7. For more details, refer to the programming manual.

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

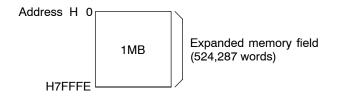
2) When dealing with many different data or other such applications, you can create a table to store the different control data and easily switch between the data according to the data type you are using.

Create a data table in the IC memory card such as outlined above, so that the data is read to the CPU every time you switch data.

When using the IC memory card as an expanded memory, the DIP switches do not need to be set, but the access enable switch should be set to "on".

Configuration of Expanded Memory Field

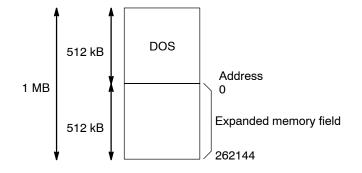
Fields of the IC memory card that are not formatted can be used as expanded memory field.


1) Using the entire IC memory card as expansion memory (when there is no DOS formatted field) The "Card capacity – 1" word portion can be used.

The data of one word (two bytes) can be stored in one address. As the following example calculation, in 2MB area, data of 1,048,575 words can be stored.

$$\frac{(2 \times 1048576) \text{ bytes}}{2} - 1 = 1,048,575 \text{ words}$$

In the expanded memory field, the addresses are numbered by word units and, regardless of the size of the formatted area, the starting address is numbered as 0 (H0). For example, the addresses for 1MB (512k words) area are from as H0 to H7FFFE.


Example: When 1MB of SRAM type IC memory card is designated as expansion memory.

7.4 For Use as Expansion Memory

2) Using the remaining DOS formatted field All of the remaining DOS formatted field can be used as expansion memory.

Example: When 512 kB is set as the DOS formatted field in a 1 MB card

7.5 Menus Related to Tool Software

The FPWIN GR is equipped with menus that are used for management of the IC memory card.

Reading Programs and Data Stored on IC Memory Cards

"Upload Program from IC Card..."

This enables one program to be selected from among the multiple programs stored on the IC memory card, and read to the FPWIN GR.

"Copy File from IC Card..."

This reads a program or data file stored on the IC memory card, and copies it to a floppy disk (or hard disk).

When creating a copy of a file stored on the IC memory card, first copy the file stored on the IC memory card, that serves as the source file, using this menu, and then insert the new IC memory card and use "Copy File from IC Card..." to copy the data from the disk to the IC memory card.

Initializing the IC Memory Card

"Erase IC Card..."

This clears all of the contents from the IC memory card. The program field assured with the "<u>F</u>ormat IC Card..." function is cleared, and the entire card is used as an expanded memory field.

Management of an SRAM type of IC Memory Card

Before using the card

"Format IC Card ... "

The IC memory card is formatted, and a "program memory field" is assured in which programs can be saved. The remaining area assured as the "program memory field" then serves as an expanded memory area.

Writing data to the IC memory card

"Download Program to IC Card ... "

Programs are written from the FPWIN GR to the IC memory card.

"Copy File to IC Card..."

The contents of a floppy disk (or hard disk) are copied to the IC memory card. This function can also be used to select multiple programs and write them to the IC memory card as a batch, all at once.

Other file management menus

"Delete File ... "

This deletes programs from the IC memory card. This function can also be used to select multiple programs and delete them as a batch, all at once.

"<u>R</u>ename File..."

This is used to change the file name or title of a program on the IC memory card.

"Change File <u>Attribute...</u>"

This is used for dedicated reading of programs stored on the IC memory card, or to change the attributes of a hidden file.

Writing to an FROM Type IC Memory Card

"Copy File to IC Card..."

Programs are written to an FROM type of IC memory card by copying the contents of a floppy disk (or hard disk) to the card.

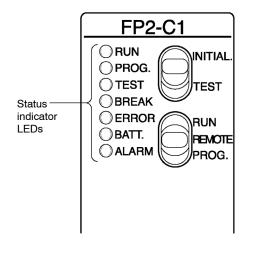
With the FROM type of IC memory card, it is not possible to update only partial sections of data, or to change file names or delete files. These functions should be carried out on the disk before the data is copied to the IC memory card.

Self-Diagnostic Function and Troubleshooting

8.1 Self-Diagnostic Function

8.1 Self-Diagnostic Function

8.1.1 LED Display for Status Condition


Status Indicator LEDs on CPU

Condition	LED status							Description	Operation (Program
	RUN	PROG.	TEST	BREAK	ERROR	BATT.	ALARM		execution) status
Normal	on	off	off	off	off	off	off	Normal operation	Operation
condition	off	on	Varies	off	off	off	off	PROG. mode	Stop
	Flashes	off	Varies	off	off	off	off	Forcing on/off in RUN mode	Operation
	off	on	on	Varies	Varies	off	off	TEST operation mode (break condition)	Stop
	on	off	on	off	Varies	off	off	TEST operation mode (operating condition)	Operation
Abnormal condition	off	on	Varies	Varies	on	Varies	off	When a self-diagnostic error occurs (break condition)	Stop
	on	off	off	off	on	Varies	off	When a self-diagnostic error occurs (operating condition)	Operation
	Varies	Varies	Varies	Varies	on	on	off	When CPU backup battery error occurs	Operation
	Varies	Varies	Varies	Varies	Varies	Varies	on	When a watchdog timer error occurs	Stop
	off	Flashes	Varies	off	Varies	Varies	off	When remote I/O slave station waiting error occurs	Stop

Status Indicator of CPU

The CPU has a self-diagnostic function which identifies errors and stops operation if necessary.

When an error occurs, the status of the status indicator LEDs on the CPU vary, as shown in the table above.

8.1 Self-Diagnostic Function

8.1.2 Operation When an Error Occurs

Normally, if an error occurs, the operation stops.

There are some instances in which operation continues even if an error occurs, such as with a battery error.

The user may select whether operation is to be continued or stopped if a duplicated output error or operation error occurs, by setting the system registers. You can set the system registers for error which operation is to be continued or stopped using programming tool software (NPST–GR/FPWIN GR).

PLC Configuration (System register) Setting Menu of FPWIN GR Software

- 1. On the "Option" menu, select "PLC Configuration".
- 2. In the [PLC Configuration] Screen, select [Action on Error] tab.

Register No.	Item	Description
20	DUPLICATE OUTPUT	[DISE, ENAB]
21	I/O UNIT ERROR	[STOP, CONT]
22	INTELLIGENT UNIT ERROR	[STOP, CONT]
23	I/O VERIFY ERROR	[STOP, CONT]
24	UNUSED	
25	UNUSED	
26	OPERATION ERROR	[STOP, CONT]
27	REMOTE I/O SLAVE LINK ERROR	[STOP, CONT]
28	I/O ERROR IN REMOTE I/O SLAVE	[STOP, CONT]
29	UNUSED	
4	BATTERY ERROR INDICATION	[ENAB, DISA]
	INDEX MODIFIER CHECK	[ENAB, DISA]

Allowing duplicated output

When you set the system register 20 to "ENAB", duplicated output is not regarded as an error and the PLC continues to operate.

Continuing after an operation error

When you set the system register 26 to "CONT", even if the PLC continues to operate, this is regarded as an error.

This applies to system registers 21 through 28 as well.

8.2 Troubleshooting

8.2.1 If the ERROR LED Lights

Condition

The self-diagnostic error occurs.

Procedure 1

Replace the backup battery of the CPU when the BATT. LED is on. (resection 9.1.1)

Procedure 2

Check the error code using the programming tool.

Using programming tool software (FPWIN GR) In the ONLINE mode, select "Status Display" on the "Online" menu. At the bottom of the "STATUS DISPLAY" window, you can find the error code.

SLF DIAGN ERR CD (45) [OPERATION ERROR]

Error code Comments

Procedure 3

Error code is 1 to 9

Condition

There is a syntax error in the program.

Operation 1

Change to PROG. mode and clear the error.

Operation 2

Execute a total-check function using programming tool software (FPWIN GR) to determine the location of the syntax error.

🖛 next page

8.2 Troubleshooting

Error code is 20 or higher

Condition

A self-diagnostic error other than a syntax error has occurred.

Operation

Use the programming tool in PROG. mode to clear the error.

Using programming tool software (FPWIN GR)

Click "Clear Error" button in the "Status Display" menu described on the previous page. Error code 43 and higher can be cleared.

In the PROG. mode, the power supply can be turned off and then on again to clear the error, but all of the contents of the operation memory except hold type data are cleared.

An error can also be cleared by executing a self-diagnostic error set instruction **F148** (ERR)/P148 (PERR).

When an operation error (error code 45) occurs, the address at which the error occurred is stored in special data registers DT90017 and DT90018. If this happens, monitor the address at which the error occurred before cancelling the error.

8.2.2 If the ALARM LED Lights

Condition

The system watchdog timer has been activated and the operation of PLC has been stopped.

Procedure 1

Set the mode selector of CPU from RUN to PROG. mode and turn the power off and then on.

If the RUN and ALARM LED is turned on again, there is probably an abnormality in the CPU. Please contact your dealer.

If the ERROR LED is turned on, go to section 8.2.1.

Procedure 2

Set the mode selector from PROG. to RUN mode.

If the ALARM LED is turned on, the program execution time is too long. Check the program, referring the following:

Check if instructions such as **JP** or **LOOP** are programmed in such a way that a scan can never finish.

Check that interrupt instructions are executed in succession.

Procedure 3

If there is nothing wrong with programs, there may be a problem with the ambient environment.

Check the wirings including the grounding link.

Especially, check if the RS232C wiring is not close to power lines and it has been shielded.

8.2.3 If the LED (POWER) of the Power Supply Unit Does Not Light

Procedure 1

Check wiring of power supply unit.

Procedure 2

Check if the output of the power supply unit is in the range of the rating.

If the capacity of internally supplied power "5V" is insufficient, investigate different unit combinations.

Procedure 3

Disconnect the power supply wiring to the other devices if the power supplied to the power supply unit is shared with them.

If the LED on the power supply unit turn on at this moment, prepare another power supply for other devices.

8.2 Troubleshooting

8.2.4 If Outputting Does Not Occur as Desired

Proceed from the check of the output side to the check of the input side.

Check of output condition 1

Output indicator LEDs are on

Procedure 1

Check the wiring of the loads.

Procedure 2

Check if the power is properly supplied to the loads.

If the power is properly supplied to the load, there is probably an abnormality in the load. Check the load again.

If the power is not supplied to the load, there is probably an abnormality in the output section. Please contact your dealer.

Check of output condition 2

Output indicator LEDs are off

Procedure 1

Monitor the output condition using a programming tool. If the output monitored is turned on, there is probably a duplicated output error.

Procedure 2

Forcing on the output using forcing I/O function.

If the output indicator LED is turned on, go to input condition check.

If the output indicator LED remains off, there is probably an abnormality in the output unit. Please contact your dealer.

Check of input condition 1

Input indicator LEDs are off

Procedure 1

Check the wiring of the input devices.

Procedure 2

Check that the power is properly supplied to the input terminals.

If the power is properly supplied to the input terminal, there is probably an abnormality in the input unit. Please contact your dealer.

If the power is not properly supplied to the input terminal, there is probably an abnormality in the input device or input power supply. Check the input device and input power supply.

Check of input condition 2

Input indicator LEDs are on

Procedure

Monitor the input condition using a programming tool.

If the input monitored is off, there is probably an abnormality with the input unit. Please contact your dealer.

If the input monitored is on, check the leakage current at the input devices (e.g., twowire type sensor) and check the program again, referring the following:

Check for the duplicated use of output and for the output using the high-level instruction.

Check the program flow when a control instruction such as **MC** or **JP** is used. Check the settings of the I/O allocation.

8.2.5 If a Communication Error Message Appears

Procedure 1

Make sure the computer and PLC are properly connected.

Procedure 2

Check if the baud rate and data length settings of the PLC and the computer are the same.

Personal computer section setting

- 1. On the "Option" menu, select "Communication Settings".
- 2. Select a baud rate "9600 or 19200".

PLC section setting

Use the SW1 of DIP switches (operation condition switches) to enter the setting for the PLC.

The SW1 "off" position is the system register setting.

Depending on the personal computer, there are times when baud rate of 19,200bps or greater are not supported. If problems occur, set both the personal computer and PLC to 9,600bps. If SW1 is on, the baud rate for the FP2/FP2SH PLC is fixed to 9,600bps.

8.2 Troubleshooting

8.2.6 If a Protect Error Message Appears

When Optional User ROM is Installed in the CPU

The program of the internal RAM cannot be modified using the programming tool and a "protect error" occurs.

Operation 1

Turn off the power supply of the PLC, remove the CPU and set the SW2 of DIP switches (operation condition switches) on CPU to the "off (internal RAM)" position.

Operation 2

Modify the program of the internal RAM using the programming tool.

Operation 3

Save the modified program to the memory or master memory and start operation again.

If the Program Memory is Protected

Operation

Turn off the power of the PLC, remove the CPU and set the SW3 of DIP switches (operation condition switches) on CPU to "off (write enabled)" position.

When a Password Function is Used

Operation

- 1. On the "Online" menu, select "Online Edit Mode".
- 2. On the "Tool" menu, select "Set PLC Password".
- 3. Enter the password and select "unprotect".

Maintenance

9.1 Replacement of Spare Parts

9.1.1 Backup Battery

Lifetime of Backup Battery

The life of the backup battery will eventually expire and therefore it is important to replace it with a new battery periodically. The battery lifetime will differ depending on the operating conditions (i.e., ambient temperature) and the type of expansion memory unit. Refer to the table below for a guide as to when to replace the battery.

Expansion memory unit type installed	Battery lifetime (ambient temperature: 55°C/131°F)
No expansion memory unit	For FP2: 10,000 hours or more (typical lifetime in actual use: approx. 13,000 hours) For FP2SH: 3,500 hours or more (typical lifetime in actual use: approx. 31,000 hours)
FP2-EM1 (Model No. AFP2201)	For FP2: 9,000 hours or more (typical lifetime in actual use: approx. 12,000 hours)
FP2-EM2 (Model No. AFP2202) FP2-EM3 (Model No. AFP2203)	For FP2: 8,000 hours or more (typical lifetime in actual use: approx. 12,000 hours)
FP2-EM6 (Model No. AFP2206)	For FP2: 8,500 hours or more (typical lifetime in actual use: approx. 12,500 hours)
FP2-EM7 (Model No. AFP2209)	For FP2: 10,000 hours or more (typical lifetime in actual use: approx. 13,000 hours) For FP2SH: 3,500 hours or more (typical lifetime in actual use: approx. 31,000 hours)
Model No. AFP2208	For FP2SH: 3,500 hours or more (typical lifetime in actual use: approx. 31,000 hours)

A drop in the battery voltage can be confirmed with special internal relays R9005 and R9006, the ERROR LED and BATT. LED. Be sure to replace new battery within a week.

IC memory card	Battery lifetime (Ambient temperature of 25 °C)	
	FP2SH	
AFP2209	Approx 3 years or more	

The battery voltage of IC card is detected only once when the CPU unit is powered on. An error will not be determined if the battery is replaced during power-on.

If the battery voltage has dropped, the ERROR LED lights, R9101 or R9102 on, and error code K55 or K54 is stored in special data register DT90000. Error codes can be confirmed using programming tools.

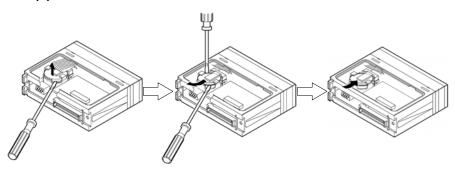
Backup battery

PLC Type	Part number	Description		
FP2 CPU unit AFC8801		Lithium battery CR2450 or equivalent		
FP2SH CPU unit	AFP8801		Common to FP3 and FP10SH	
IC memory card	AFP2806		BR-1225A/B	

- During RAM operation, save the program in the CPU onto disk using programming tool software (FPWIN GR).
- Never throw batteries into a fire, disassemble or charge the battery in order to prevent accidents such as bursting, fire or heat generation.

Replacement Method of Backup Battery

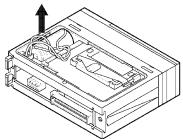
Preparation


Leave the unit on for more than 30 minutes, then turn the power off and remove the CPU. It is recommended to save the programs and data within the CPU in a PC in case that it requires time for the replacement.

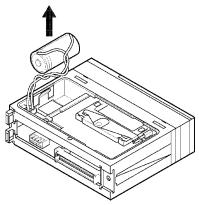
Note

After turning the power off, be sure to finish replacing the battery within 10 minutes.

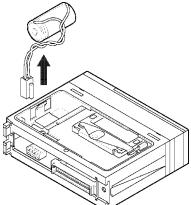
Procedure for FP2


- Use an insulated flat-head screwdriver and lift up the battery.
 During this operation, be careful not to damage printed circuit board, battery holder, or other internal components.
- 2. Pull out the battery in the direction shown by the arrows below (pushing from the rear).
- 3. Holding the positive pole of the battery upwards, press the new battery into the battery holder underneath the (+) terminal.

9.1 Replacement of Spare Parts


Procedure for FP2SH

1. Lift up the lead wire.



Make sure the lead wire next to the connector insertion area, which is also the battery holder, is lifted out of the hole that secures it in place.

2. Lift up the battery.

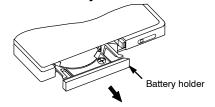
3. Pull the connector off.

Pull the connector straight off, so the terminals do not bend.

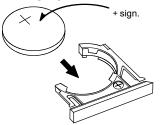
4. Install the new battery by reversing the above procedure.

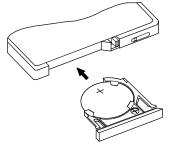
Make sure the connector terminals are positioned in the correct directions.

9.1 Replacement of Spare Parts


Procedure for AFP2209:

Preparation Backup the data saved in the IC memory card. Note: The saved data is overwritten when replacing the battery.


> 1. Move to the lock switch to the RELEASE position (toward the battery holder).


2. Remove the battery holder.

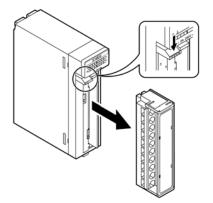
3. Place the battery in the battery holder with the side with a '+' sign facing up.

4. Insert the battery holder with the battery all the way seated in the IC memory card.
* The lock swich is automatically back to the LOCK position when removing the battery holder. In this state, insert the battery holder all the way seated.

Confirm the lock switch is in the LOCK position.

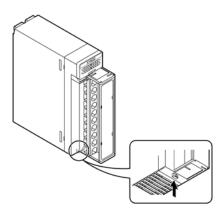
5. Write the backup data in the IC memory card.

9.1.2 Removable Terminal Block for Input and Output Units


Removable Terminal Block

The removable terminal block is used on the terminal block type input and output units. The removable terminal block can be removed while it is still wired. Therefore, if a malfunction or other error occurs, replacement of the unit and other maintenance procedures can be carried out speedily.

Replacement of Removable Terminal Block


Removal procedure

The whole removable terminal block for terminal block type input and output units can be removed by lowering the "OPEN" knob (release lever) on the top of the terminal block. Used at the time of wiring.

Installation procedure

To replace the terminal block, press it into its original position until it is completely seated and press the terminal block lock button on the bottom of the unit to secure the terminal block in place. Then verify that the terminal block is properly secured and cannot be removed.

9.2 Preventive Maintenance

9.2 Preventive Maintenance

Although the FP2/FP2SH system has been designed in such a way to minimize maintenance and offer troublefree operation, several maintenance aspects should be taken into consideration.

If preventive maintenance is performed periodically, you will minimize the possibility of system malfunctions.

Inspection item	Inspection description	Basis of judgement	Reference	
Power supply unit	Check POWER LED on power supply unit	Normal if on	Section 2.7	
	Power supply unit	Periodic replacement (20,000 hours of operation)		
CPU display	Check RUN LED	On in RUN state	Section 2.2, 2.4,	
	Check ERROR LED	Normal if off	and 8.1	
	Check ALARM LED	Normal if off		
	Check BATT. LED	Normal if off		
Input/output unit display	Check input/output display LED	Normal if "light" during on, and "not light" during off	Section 2.8	
Installation condition	Backplane mounting looseness	Securely mounted	Section 4.1.1 and	
	Looseness and/or play in unit		4.1.2	
Connection condition	Looseness of terminal screw	No looseness	Section 4.1.3, 4.2, 4.4 and 4.5	
	Proximity of connection in pinch terminal	Pinched parallel		
	Connector looseness	Locked in		
	Connection condition of expan- sion cable	Connector section is not loose		
Power supply voltage	Voltage between terminals	FP2-PSA1: 100 to 120V AC	Section 4.2.1	
of power supply unit		FP2-PSA2: 200 to 240V AC		
		FP2-PSA3: 100 to 240V AC		
		FP2-PSD2: 24V DC		
Power supply voltage Voltage between terminals for input/output Voltage between terminals		Within the specified range of each unit	Section 2.9 to 2.11	
Ambient environment	Ambient temperature	0 to 55°C/32 to 131°F	Section 4.1.1	
	Ambient humidity	30 to 85% RH]	
	Operating condition	No dust or corrosive gas		
Backup battery	Battery for CPU	Regular replacement	Section 9.1.1	
	Battery for IC memory card			

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Specifications

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Specifications 10.1

10.1 Specifications

Item Descriptions Ambient temperature 0 to +55°C/32 to 131°F Storage temperature -20 to +70°C/-4 to +158°F Ambient humidity 30 to 85% RH (at 25°C non-condensing) Storage humidity 30 to 85% RH (at 25°C non-condensing) Breakdown voltage 1,500V AC, 1 minute between AC external terminal and frame ground terminal 500V AC, 1 minute between DC external terminal and frame ground terminal Insulation resistance 100M Ω or more (measured with a 500V DC megger testing) between external terminal and frame ground terminal Vibration resistance 10 to 55Hz, 1 cycle/min: double amplitude of 0.75mm/0.030 in., 10 min on 3 axes Shock resistance 98m/s², 4 times on 3 axes

Free from corrosive gases and excessive dust

General Specifications

Dimensions	

Operating conditions

Noise immunity

1,500 Vp-p with pulse widths 50ns and 1µs (based on in-house measurements)

FP2 backplane

Item	Description						
Number of module	5 modules	7 modules	9 modules	12 modules	14 modules		
L (mm/in.)	140/5.512	209/8.228	265/10.433	349/13.740	405/15.945		

FP2 backplane H type

Item	Description	
Number of module	Basic backplane 11 modules	Expansion backplane 10 modules
L (mm/in.)	349/13.740	349/13.740

The illustration above shows the 7-module type. The 5-module type does not have an expansion connector.

Table of Weight

Туре				Part number	Weight (Approx.)
FP2 CPU				FP2-C1	130g
				FP2-C1D	220g
				FP2-C1SL	250g
FP2SH CPU				FP2-C2L	130g
				FP2-C2	130g
				FP2-C2P	170g
				FP2-C3P	170g
Backplane				FP2-BP05	180g
•				FP2-BP07	280g
				FP2-BP09	350g
				FP2-BP12	470g
				FP2-BP14	530g
				FP2-BP11MH	470g
				FP2-BP10EH	470g
FP2 Power supply unit				FP2-PSA1	180g
				FP2-PSA1	180g
				FP2-PSA2	280g
					•
Innut un!t	DC input	16 maint to		FP2-PSD2	300g
Input unit	DC input		ninal type, 12 to 24V DC	FP2-X16D2	140g
			nector type, 24V DC nector type, 24V DC	FP2-X32D2	100g
<u></u>	.		71 7	FP2-X64D2 FP2-Y6R	120g
Output unit	Relay output		6-point terminal type		170g
		16-point term		FP2-Y16R	190g
	Transistor output		ninal NPN type	FP2-Y16T	150g
		32-point connector NPN type		FP2-Y32T	100g
		64-point connector NPN type		FP2-Y64T	120g
		16-point term	ninal PNP type	FP2-Y16P	150g
		32-point con	nector PNP type	FP2-Y32P	100g
		64-point con	FP2-Y64P	120g	
I/O mixed unit	32-point 24V DC inj	put/32-point co	FP2-XY64D2T, FP2-XY64D7T	120g	
	32-point 24V DC inj	put/32-point co	FP2-XY64D2P, FP2-XY64D7P	120g	
Intelligent unit	Analog input unit	log input unit			160g
	Analog output unit			FP2-DA4	160g
	High-speed	NPN		FP2-HSCT	110g
	counter unit	PNP		FP2-HSCP	1
	Pulse I/O unit	NPN		FP2-PXYT	130g
		PNP		FP2-PXYP	1
	Positioning unit	2-axis type		FP2-PP2	125g
		4-axis type		FP2-PP4	150g
	Positioning unit	2-axis type	Transistor output type	FP2-PP21	105g
	(Multifunction		Line driver output type	FP2-PP22	1 ĭ
	type)	4-axis type	Transistor output type	FP2-PP41	120g
			Line driver output type	FP2-PP42	Ηĭ
	Positioning unit	2-axis type	Transistor output type	FP2-PP2T	140g
	(Interpolation		Line driver output type	FP2-PP2L	140g
	type)	4-axis type	Transistor output type	FP2-PP4T	140g
		4-anis type			•
	Sorial data unit		Line driver output type	FP2-PP4L	150g
	Serial data unit			FP2-SDU	120g
	Multi communicatio	on unit	Main unit	FP2-MCU	130g
			Communication block	FP2-CB232 FP2-CB422	35g
				FP2-CB485	

next page

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Туре				Part number	Weight (Approx.)
Intelligent unit	S-LINK unit			FP2-SL2	120g
	Multi-wire link u	nit		FP2-MW	110g
	ET-LAN unit, ET	-LAN2 unit	FP2-ET1, FP2-ET2	125g	
	MEWNET-VE lin	k unit, MEWNET-	FP2-VE, FP2-VE2	125g	
	Remote I/O Slave	e Unit	FP2-RMS	110g	
	FNS Unit	FNS Unit	Transistor output type	FP2-FNS	88g
		FP-FNS Block	PROFIBUS	AFPN-AB6200	31g
			Device Net	AFPN-AB6201	32g
			CAN open	AFPN-AB6218	32g
	FMU Unit		PROFIBUS	FP2-DPV1-M	118g
			Device Net	FP2-DEV-M	118g
			CAN open	FP2-CAN-M	118g
Expansion cabl	e	FP2-EC	180g		
				FP2-EC2	400g

FP2 Performance Specifications

ltem		
D		FP2-C1 (AFP2211), FP2-C1D (AFP2212), FP2-C1SL (AFP2214)
U	ntrol method	Relay symbol/cyclic operation
Controllable I/O points	Basic construction	Using Backplanes: Max. 768 points (12 modules) Using Backplanes H type: Max. 512 points (8 modules)
	Expanded construction	Using Backplanes: Max. 1,600 points (25 modules) Using Backplanes H type: Max. 2,048 points (32 modules)
	Using remote I/O system	Max. 2,048 points (using S-LINK or MEWNET-F system)
Program capacity	Internal memory	Approx. 16k steps
(* Note 1)	Using expansion memory	Approx. 32k steps (* Note 2)
Number of instruc-	Basic instructions	96 types
tions	High-level instructions	428 types
Operation speed	Basic instructions	From 0.35µs per instruction
(typical value)	High-level instructions	From 0.93µs per instruction
Operation	External input relays (X)	2,048 points (* Note 1)
memory points for	External output relays (Y)	2,048 points (* Note 1)
relays	Internal relays (R)	4,048 points (* Note 3)
	Timer/counter (T/C)	Total 1,024 points (* Note 3) – Timer: units of 1ms, 10ms, 100ms and 1s counts up to 32,767 × each unit – Counter: 1 to 32,767 counts
	Link relays (L)	2,048 points (* Notes 3 and 4)
	Pulse relays (P)	1,024 points (* Note 3)
	Alarm relays (E)	Not available
	Data registers (DT)	6,000 words (* Note 3)
	File registers (FL)	0 to 14,333 words (when expanding: 0 to 30,717 words) (* Note 3)
	Link data registers (LD)	256 words (* Notes 3 and 5)
	Timer/counter set value area (SV)	1,024 words
	Timer/counter elapsed value area (EV)	1,024 words
	Index registers (I0 to ID)	14 words

next page

10.1 Specifications

Item	FP2 CPU				
	FP2-C1 (AFP2211), FP2-C1D (AFP2212), FP2-C1SL (AFP2214)				
Differential points	Unlimited number of point	S			
Auxiliary timer	Unlimited number of point	s, down type ti	imer (0.01 to 327.67s)		
Shift register	Max. 253 points				
Master control relay points (MCR)	256 points				
Number of labels (JP and LOOP)	256 points				
Number of step ladder	1,000 steps (* Note 3)				
Number of subroutine	100 subroutines				
Number of interrupt program	1 program (periodical inter range from 0.5ms to 1.5s)		tting of the time interval within the		
Comment input function	Available (* Note 6)				
Sampling trace function	Max. 1,000 samples (4,000 words) for 16 contacts and 3 words				
	(* Note 2)				
Clock/calendar function	Available (year, month, day, hour, minute, second and day of week) (* Notes 6 and 7)				
Link functions	Inter-PLC link, computer link, remote programming, modem and data transfer				
Self-diagnostic functions	Watchdog timer, memory malfunction detection, I/O malfunction detection, backup battery malfunction detection, program syntax check, etc.				
Other functions		, interrupt proc	ram block edition during RUN essing, test run, constant scan		
Memory backup time (lithium battery storage time)	CPU only		Min. 10,000 hours (typical: approx. 13,000 hours)		
	When installed expan- sion memory unitFP2-EM1Min. 9,000 hours (typical: approx. 12,000 hour				
	FP2-EM2, Min. 8,000 hours FP2-EM3 (typical: approx. 12,000 hou		Min. 8,000 hours (typical: approx. 12,000 hours)		
		FP2-EM6	Min. 8,500 hours (typical: approx. 12,500 hours)		
		FP2-EM7	Min. 10,000 hours (typical: approx. 13,000 hours)		

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Notes

- The practical usable external input and output points are restricted according to the number of the input and output units. The external output relays (Y) that not used at the output unit can be used as internal relays.
- 2) The expansion memory unit (FP2–EM2, FP2–EM3 or FP2–EM6) is required.
- 3) Hold or non-hold type can be set using the system registers.
- 4) Can also be used as internal relays.
- 5) Can also be used as data registers.
- 6) The expansion memory unit (FP2–EM1, FP2–EM2 or FP2–EM3) is required.
- 7) Precision of calendar timer: At 0°C/32°F, less than 90-second error per month. At 25°C/77°F, less than 40-second error per month. At 55°C/131°F, less than 98-second error per month.
- 8) The expansion memory unit (FP2–EM3, FP2–EM6 or FP2–EM7) is required.

10.1 Specifications

FP2SH Performance Specifications

Item		FP2SH CPU		
		FP2-C2L (AFP2221), FP2-C2 (AFP2231), FP2-C2P (AFP2235), FP2-C3P (AFP2255)		
Program/cont	rol method	Relay symbol/cyclic operation		
Controllable I/O points	Basic construction	Using Backplanes: Max. 768 points (12 modules) Using Backplanes H type: Max. 512 points (8 modules)		
	Expanded construction	Using Backplanes: Max. 1,600 points (25 modules) Using Backplanes H type: Max. 2,048 points (32 modules)		
	Using remote I/O system	Max. 8,192 points (using S–LINK or MEWNET-F system)		
Program capacity	Internal memory	FP2-C2/FP2-C2P: approx. 60K steps FP2-C3P: approx. 120K steps		
	Using expansion memory unit			
Number of instructions	Basic instructions	95 types		
	High-level instructions	434 types		
Operation speed	Basic instructions	From 0.03μs per instruction		
(typical value)	High-level instructions	From 0.06μs per instruction		
Operation memory	External input relays (X)	8,192 points (* Note 1)		
points for relays	External output relays (Y)	8,192 points (* Note 1)		
	Internal relays (R)	14,192 points (* Note 2)		
	Timer/counter (T/C)	Total 3,072 points (* Note 2) - Timer: units of 1ms, 10ms, 100ms and 1s counts up to 32,767 × each unit - Counter: 1 to 32,767 counts		
	Link relays (L)	10,240 points (* Notes 2 and 3)		
	Pulse relays (P)	2,048 points (* Note 2)		
	Alarm relays (E)	2,048 points (* Note 2)		
Operation memory	Data registers (DT)	10,240 words (* Note 2)		
points for memory areas	File registers (FL)	FP2–C2L: 32,765 words FP2–C2P, FP2–C3P: 32,765 words \times 3 banks (* Note 2)		
	Link data registers (LD)	8,448 words (* Notes 2 and 4)		
	Timer/counter set value area (SV)	3,072 words		
	Timer/counter elapsed value area (EV)	3,072 words		
	Index registers (I0 to ID)	14 words \times 16 banks		

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

10.1 Specifications

Item	FP2SH CPU				
	FP2-C2L (AFP2221), FP2-C2 (AFP2231), FP2-C2P (AFP2235), FP2-C3P (AFP2255)				
Differential points	Unlimited number of points				
Auxiliary timer	Unlimited number of points, down type tim	er (0.01 to 327.67s)			
Shift register	Max. 887 points				
Master control relay points (MCR)	256 points (For FP2-C3P: 1st program: 2	56 points/2nd program: 256 points)			
Number of labels (JP and LOOP)	256 points (For FP2-C3P: 1st program: 2	56 points/2nd program: 256 points)			
Number of step ladder	1,000 steps (For FP2-C3P: 1st program only)				
Number of subroutine	100 subroutines				
Number of interrupt program	25 program				
Comment input function	Available (internal function)				
Clock/calendar function	Available (year, month, day, hour, minute,	second and day of week) (* Note 5)			
Link functions	Inter-PLC link, computer link, remote progr	amming, modem and data transfer			
Self-diagnostic functions	Watchdog timer, memory malfunction detect up battery malfunction detection, program s				
Other functions	ROM operation function (* Note 6) forced in run and constant scan	nput/output, interrupt processing, test			
Memory backup time (lithium battery storage time)	CPU only Min. 3,500 hours or more (typical: approx. 31,000 hours)				
	When installing memory unit (AFP2207 or AFP2208)Min. 3,500 hours (typical: approx. 31,000 hours)				
Memory backup time for IC	AIC52000 (Rechargeable type)	3 months or more (After full charge)			
memory card (at 25 °C)	AFP2209 (Interchangeable type)	3 years or more			

- 1) The practical usable external input and output points are restricted according to the number of the input and output units.
- 2) Hold or non-hold type can be set using the system registers.
- 3) Can also be used as internal relays.
- 4) Can also be used as data registers.
- 5) Precision of calendar timer: At 0°C/32°F, less than 57-second error per month. At 25°C/77°F, less than 88-second error per month. At 55°C/131°F, less than 88-second error per month.
- 6) For FP2-C2L and FP2-C2, the memory unit is required.

10.3 Relays, Memory Areas and Constants

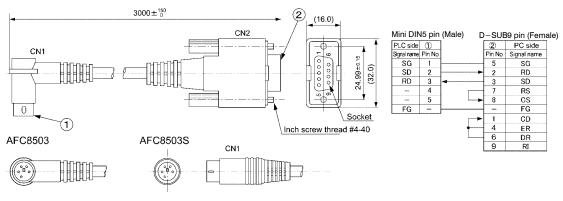
10.2 Relays, Memory Areas and Constants

Item			Function	Numbering	
				FP2	FP2SH
Relay	External input relay	(X)	Turn on or off based on external input.	2,048 points (X0 to X127F)	8,192 points (X0 to X511F)
	External output relay	(Y)	Externally outputs on or off state.	2,048 points (Y0 to Y127F)	8,192 points (Y0 to Y511F)
	Internal relay(R) (* Note 1)	(R)	Relay which turns on or off only within pro- gram.	4,048 points (R0 to R252F)	14,192 points (R0 to R886F)
	Link relay (* Note 1)	(L)	This relay is a shared relay used for MEWNET link system.	2,048 points (L0 to L127F)	10,240 points (L0 to L639F)
	Timer (* Notes 1 and 2)	(T)	If a TM instruction has timed out, the con- tact with the same number turns on.	(T0 to T999/	3,072 points (T0 to T2999/ C3000 to C3071)
	Counter (* Notes 1 and 2)	(C)	If a CT instruction has counted up, the contact with the same number turn on.	C1023)	
	Pulse relay	(P)	This relay is used to turn on only for one scan duration programmed with the OT ["] and OT [#] instructions.	1,024 points (P0 to P63F)	2,048 points (P0 to P127F)
	Error alarm relay	(E)	If turned on while the unit is running, this relay stores the history in a dedicated buff- er. Program this relay so that it is turned on at the time of abnormality.		2,048 points (E0 to E2047)
	Special internal relay	(R)	Relay which turns on or off based on spe- cific conditions and is used as a flag.	176 points (R9000 to R910F)	176 points (R9000 to R910F)

Item			Function	Numbering		
				FP2	FP2SH	
Memory area	External input relay	(WX)	Code for specifying 16 exter- nal input points as one word (16 bits) of data.	128 words (WX0 to WX127)	512 words (WX0 to WX511)	
	External output relay	(WY)	Code for specifying 16 exter- nal output points as one word (16 bits) of data.	128 words (WY0 to WY127)	512 words (WY0 to WY511)	
	Internal relay	(WR)	Code for specifying 16 inter- nal relay points as one word (16 bits) of data.	253 words (WR0 to WR252)	887 words (WR0 to WR886)	
	Link relay	(WL)	Code for specifying 16 link relay points as one word (16 bits) of data.	128 words (WL0 to WL127)	640 words (WL0 to WL639)	
	Data register (* Note 1)	(DT)	Data memory used in pro- gram. Data is handled in 16-bit units (one word).	6,000 words (DT0 to DT5999)	10,240 words (DT0 to DT10239)	
	Link data register (* Note 1)	(LD)	This is a shared data memory which is used within the MEWNET link system. Data is handled in 16-bit units (one word).	256 words (LD0 to LD255)	8,448 words (LD0 to LD8447)	
	Timer/Counter set value area (* Note 1)	(SV)	Data memory for storing a tar- get value of a timer and an ini- tial value of a counter. Stores by timer/counter number.	1,024 words (SV0 to SV1023)	3,072 words (SV0 to SV3071)	
	Timer/Counter elapsed value area (Note 1 and Note 3)	(EV)	Data memory for storing the elapsed value during opera- tion of a timer/counter. Stores by timer/ counter number.	1,024 words (EV0 to EV1023)	3,072 words (EV0 to EV3071)	
	File register (* Notes 1 and 3)	(FL)	Data memory used in pro- gram. Data is handled in 16-bit units (one word).	FP2 (16 K): 0 to 14,333 words (FL0 to FL14332) FP2 (32 K) (when expanded): 0 to 30,717 words (FL0 to FL30716)	FP2-C2L: 32,765 words FP2-C2, FP2-C2P, FP2-C3P: 32,765 words × 3 banks	
	Special data register	(DT)	Data memory for storing spe- cific data. Various settings and error codes are stored.	256 words (DT90000 to DT90255)	512 words (DT90000 to DT90511)	
	Index register	(I)	Register can be used as an address of memory area and constants modifier.	14 words (I0 to ID)	14 words × 16 banks (I0 to ID)	

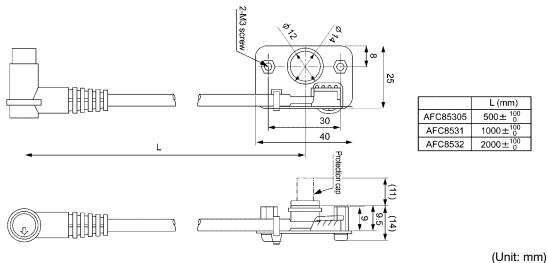
🖛 next page

10.3 Relays, Memory Areas and Constants


ltem		Numbering		
item		FP2/FP2SH		
Control instruction	Master control relay points (MCR)	256 points		
point	Number of labels (JP and LOOP)	Total: 256 points		
	Number of step ladder (* Note 4)	1,000 steps		
	Number of subroutine	100 subroutines		
	Number of interrupt program	1 program (periodical interrupt: allows setting of the time interval within the range from 0.5ms to 1.5s)		
Constant	Decimal constants (K)	K-32768 to K32767 (for 16-bit operation)		
		K-2147483648 to K2147483647 (for 32-bit operation)		
	Hexadecimal (H)	H0 to HFFFF (for 16-bit operation)		
	constants	H0 to HFFFFFFF (for 32-bit operation)		
	Decimal constants (f)	f=1.175494 \times 10 ⁻³⁸ to f=3.402823 \times 10 ³⁸		
	(monorefined real number)	f1.175494 \times 10 $^{-38}$ to f3.402823 \times 10 38		

🔊 Notes

- 1) There are two unit types, the hold type that saves the conditions that exist just before turning the power off or changing from the RUN mode to PROG. mode, and the non-hold type that resets them. The selection of hold type and non-hold type can be changed by the setting of system register.
- 2) The points for the timer and counter can be changed by the setting of system register 5. The numbers given in the table are numbers when system register 5 is at its default setting.
- 3) The size of the file register varies depending on the settings of system registers 0, 1 and 2.
- 4) Hold or non-hold type can be set using the system registers.


10.3 Cable/Adapter Specifications

10.3.1 AFC8503/AFC8503S

(Unit: mm)

10.3.2 AFC85305/AFC8531/AFC8532 (For extending for the tool port)

(Unit: mm)

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Appendix

11.1 System Registers / Special Internal Relays / Special Data Registers

Precaution for System Registers

What is the system register area

- System registers are used to set values (parameters) which determine operation ranges and functions used. Set values based on the use and specifications of your program.
- There is no need to set system registers for functions which will not be used.

Type of system registers

The registers to be used depend on each PLC.

(1) Allocation of user memory (System registers 0, 1 and 2)

These registers set the size of the program area and file register area, allowing the user memory area to be configured for the environment used. The size of the memory area will vary depending on the type.

(2) Allocation of timers and counters (System register 5)

The number of timers and counters is set by specifying the starting counter number.

(3) Hold/non-hold type setting (System registers 6 to 18)

When these registers are set to "hold type", the values in the relays and data memory will be retained even if the system is switched to PROG. mode or the power is turned off. If set to "non-hold type", the values will be cleared to "0".

(4) Operation mode setting on error (System registers 4, 20 to 28)

Set the operation mode when errors such as battery error, duplicated use of output, I/O verification error and operation error occur.

(5) Time settings (System registers 29 to 34)

Set time-out error detection time and the constant scan time.

(6) Remote I/O operation settings (System registers 25, 35 and 36)

These registers are used to select whether or not to wait for a slave station connection when the remote I/O is started, and the remote I/O update timing.

(7) MEWNET-W PLC link settings (System registers 40 to 47, 50 to 55, and 57)

These settings are for using link relays and link registers for MEWNET-W PC(PLC) link communication. Note) The default value setting is "no PC(PLC) link communication".

(8) Tool and COM port communication settings (System registers 410 to 418)

Set these registers when the Tool port and COM port are to be used for computer link, general-purpose serial communication, PC(PLC) link, and modem communication. Note that the default setting is computer link mode.

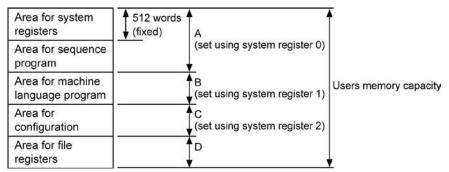
Checking and changing the set value of system register

If you are going to use a value which is already set (the value which appears when read), there is no need write it again.

Using programming tool software

Produce:

- 1. Set the control unit in the PROG mode.
- 2.Option ->PLC Configuration
- 3.When the function for which setting are to be entered is selected in the PLC Configuration dialog box, the value and setting status for the selected system register are displayed.
- To change the value and setting status, write in the new value and /or select the setting status.
- 4. To register these settings, choose OK


Precautions for system register setting

- System register settings are effective from the time they are set. However, input settings, tool portico port, and modem connection settings become effective when the mode is changed from PROG. to RUN.
- With regard to the modem connection setting, when the power is turned off and on or when the mode is changed from PROG. to RUN, the controller sends a command to the modem which enables it for reception.
- When the initialized operation is performed, all set system register values (parameters) will be initialized

11.1.1 Table of System Registers for FP2/FP2SH/FP10SH

Allocation of user memory (system registers 0, 1 and 2) Available PLC: FP2

The configuration of user memory of FP2 is as follows:

Be sure to set the A (using system register 0), B (using system register 1), and C (using system register 2) as even numbers.

The area remaining in A after 512 words are subtracted is the sequence program area that can actually be used.

File register area D is the area that remains after A, B, and C have been subtracted from the user memory capacity.

The configuration area is reserved for future expansion.

FP2 (16K)

Users memory capacity: 16K wordsSetting range of A: 2K to 16K words (default value: 12k)Setting range of B: 0 to 14K words (default value: 0)Setting range of C: 0 to 14K words (default value: 0)Allocate so that $A+B+C \ge 16$

Setting example: The values of D when B = C = 0.

Α	Area for sequence program (1024 x A-512)	Area for file registers (D)
2	1,535 steps	14,333 words
4	3,583 steps	12,285 words
6	5,631 steps	10,237 words
8	7,679 steps	8,189 words
10	9,727 steps	6,141 words
12	11,775 steps (default value)	4,093 words (default value)
14	13,823 steps	2,045 words
16	15,871 steps	0 word

FP2 (32K)

Users memory capacity	: 32K words
Setting range of A	: 2K to 32K words (default value: 12k)
Setting range of B	: 0 to 30K words (default value: 0)
Setting range of C	: 0 to 30K words (default value: 0)

Allocate so that $A + B + C \leq 32$.

Setting example:	The values of D	when $B = C = 0$.
------------------	-----------------	--------------------

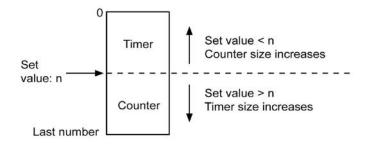
Α	Area for sequence program (1024 x A-512)	Area for file registers (D)
2	1,535 steps	30,717 words
4	3,583 steps	28,669 words
6	5,631 steps	26,621 words
8	7,679 steps	24,573 words
10	9,727 steps	22,525 words
12	11,775 steps (default value)	20,477 words (default value)
14	13,823 steps	18,429 words
16	15,871 steps	16,381 words
18	17,919 steps	14,333 words
20	19,967 steps	12,285 words
22	22,015 steps	10,237 words
24	24,063 steps	8,189 words
26	26,111 steps	6,141 words
28	28,159 steps	4,093 words
30	30,207 steps	2,045 words
32	32,255 steps	0 word

Setting example for each area

When not using the machine language program area Refer to the tables for the different types given above.

When using the machine language program area

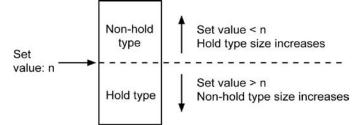
Α	Area for machine language program		
2	4,096 words		
4	8,192 words		
6	12,288 words		
8	16,384 words		
10	20,480 words		
12	24,576 words		
14	28,672 words		
16	32,768 words		


В	Area for machine language program
18	36,864 words
20	40,960 words
22	45,056 words
24	49,152 words
26	53,248 words
28	57,344 words
30	61,440 words

For example, for the FP2 (16K-step type), when the area for the sequence program (A) is set to 10K words and the area for configuration (C) is set to 0K words, the area for the machine language program can be set up to 6K words.

Setting the number of timers and counter (system register 5)

Timers and counters share the same area. If the method of dividing the area is changed, the number of timers and counters will also change.


Туре	Total point numbers	Default value of system register 5	Timer	Counter
FP2	1,024 points	1000	1000 points (No. 0 to 999)	24 points (No. 1000 to 1023)
FP2SH/FP10SH	3,072 points	3000	3000 points (No. 0 to 2999)	72 points (No. 3000 to 3071)

- For FP2/FP2SH, set the system registers 5 and 6 to the same value. This sets the timer to a non-hold type and counter to a hold type.
- By setting system register 5 to "0", the whole area becomes the counter. Also, by setting it to the value 1 higher than the last number, the whole area becomes the timer.

Hold type area starting address (system registers 6 to 13)

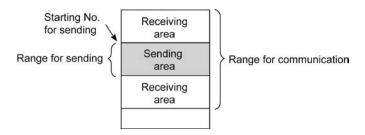
Set each relay and register to a hold type or non-hold type.

- For normal situations, set the system registers 5 and 6 to the same value. This sets the timer to a nonhold type and counter to a hold type.
- By setting this value to the first number, the whole area becomes hold type. Also, by setting it to the value 1 higher than the last number, the whole area becomes non-hold type.
- The relays and registers for links not specified in the send area of system registers 40 to 55 are nonhold type regardless of what is set here.

- For the FP2SH/FP10SH, the index registers can be set to hold type or non-hold type. The register numbers and settings are related as shown below.

Bank number	Set value for I0 to ID	Bank number	Set value for I0 to ID
Bank 0	0 to 13	Bank 8	112 to 125
Bank 1	14 to 27	Bank 9	126 to 139
Bank 2	28 to 41	Bank A	140 to 153
Bank 3	42 to 45	Bank B	154 to 167
Bank 4	56 to 69	Bank C	168 to 181
Bank 5	70 to 83	Bank D	182 to 195
Bank 6	84 to 97	Bank E	196 to 209
Bank 7	98 to 111	Bank F	210 to 223

efault value of hold type area setting


Туре	FP2	FP2SH	
Timer	All non-hold type		
Counter	All hold type		
Internal relay	Non-hold type: 200 words (WR0 to WR199)	Non-hold type: 500 words (WR0 to WR499)	
internal relay	Hold type: 53 words (WR200 to WR252)	Hold type: 387 words (WR500 to WR886)	
Data register	All hold type		
File register	All hold type		
Link relay for MEWNET-W	All hold type		
Link register for MEWNET-W	All hold type		
Index register	-	All hold type	

Туре	FP10SH	
Area		
Timer	All non-hold type	
Counter	All hold type	
Internal relay	Non-hold type: 500 words (WR0 to WR499)	
Internal relay	Hold type: 387 words (WR500 to WR886)	
Data register	All hold type	
File register	All hold type	
Link relay for MEWNET-W/P	All hold type	
Link register for MEWNET-W/P	All hold type	
Link relay for MEWNET-H	All hold type	
Link register for MEWNET-H	All hold type	
Index register for FP10SH	All hold type	

MEWNET-W PC link setting

For PC link (W) 0: System registers 40 to 45 For PC link (W) 1: System registers 50 to 55

Regarding the link relays and link data registers, specify the range for communication and divide it up for sending and receiving.

- The default settings have the range for communication (system registers 40, 41, 50 and 51) set to 0 so that PC link communication is not possible.
- If the range for sending (system registers 43, 45, 53 and 55) is set to 0, the range for communication will all be for receiving.
- The link relay and link data register ranges not used for communication, can each be used as internal relays and data registers.

Item	Add- ress	Name		Default value	Descriptions	
	0	Sequence program area capacity setting Available PLC: FP2		12K words	FP2 (16K): 2 to 16K words FP2 (32K): 2 to 32K words	
Alloca- tion of user memory	user ¹ setting		a capacity C: FP2	0 word	FP2 (16K): 0 t FP2 (32K): 0 t	
2		Configuration capacity setting Available PLC: FP2		0 word	FP2 (16K): 0 to 14K words FP2 (32K): 0 to 30K words	
		Battery error alarm		Enabled	c e E Disabled: V c e t t n n d	Vhen a battery error occurs, a self-diagnostic error is issued and the ERROR LED lights. BATT. LED lights.) Vhen a battery error occurs, a self-diagnostic error is not issued and he ERROR LED does not light. (BATT. LED loes not light.)
	4		Internal relay (R)	Cleared	Cleared:	When the initialize/ test switch is set to
			Link relay (L)	Cleared		INITIALIZE position
		position	Timers/ Counters (T, C, SV, EV)	Cleared	the type of memory to be cleared. Not cleared: When the initialize/te switch is set to INITIALIZE position while in the PROG.	mode, you can specify the type of memory to
			Data register (DT)	Cleared		When the initialize/test
Action on error			Link data register (LD)	Cleared		INITIALIZE position
••			File register (FL)	Cleared		mode, you can specify
			Index register (I)	Cleared		
			Error alarm relay (E)	Cleared		
		Differential type instructions setting between MC and MCE instructions TM instruction operation setting Available PLC: FP2SH, FP10SH		Conven- tional	in the MC and New: Disrega	Holds preceded result MCE instruction set. rds preceded result in ICE instruction set.
				Conven- tional	Conventional: Scan synchronous New: Scan asynchronous	
		Index modifi setting		Enabled	Enabled: Checks for overflow of the index modifier area, and performs normal processing. Disabled: Performs processing without checking for overflow of the index modifier area.	

Table of system registers for FP2/FP2SH/FP10SH

Note) The error alarm relay is available for FP2SH and FP10SH.

ltem	Add- ress	Name	Default value	Descriptions		
	5	Counter starting address (setting the number of timers and counters)	FP2SH/ FP10SH: 3000 FP2: 1000	FP2SH/ FP10SH: 0 to 3072 FP2: 0 to 1024	Set the system registers	
	6	Hold type area starting address setting for timer/counter	FP2SH/ FP10SH: 3000 FP2: 1000	0 to 1024 FP2SH/ FP10SH: 0 to 3072 FP2: 0 to 1024	5 and 6 to the same value.	
	7	Hold type area starting address setting for internal relays (in word units)	FP2SH/ FP10SH: 500 FP2: 200	FP2SH/FP10SH	H: 0 to 887	
	8	Hold type area starting address setting for data registers	0	FP2SH/FP10SH: 0 to 10240 FP2: 0 to 6000		
Hold/ Non- hold	9	Hold type area starting address setting for file registers (For FP2SH, bank 0)	0	FP2SH/FP10SH: 0 to 32765 FP2 (16K): 0 to 14333 FP2 (32K): 0 to 30717		
	10	Hold type area starting address setting for MEWNET-W/P link relays (for PC link 0) (*Note)	0	0 to 64		
	11	Hold type area starting address setting for MEWNET-W/P link relays (for PC link 1) (*Note)	64	64 to 128		
	12	Hold type area starting address setting for MEWNET-W/P link data registers (for PC link 0) (*Note)	0	0 to 128		
	13	Hold type area starting address setting for MEWNET-W/P link data registers (for PC link 1) (*Note)	128	128 to 256		
	14	Hold or non-hold setting for step ladder process	Non-hold	Hold/non-hold		
	15	Hold type area starting address setting for file register (for bank 1)	0	0 to 32765		

Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH

MEWNET-P: FP10SH

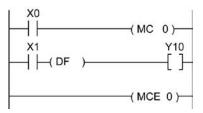
Item	Add-	Name	Default value	Descriptions
	ress	Hold type area starting	value	
	16	address setting for MEWNET-H link relays Available PLC: FP10SH	128	128 to 640
Hold/ Non-	17	Hold type area starting address setting for MEWNET-H link data registers Available PLC: FP10SH	256	256 to 8448
hold	18	Hold type area starting address setting for index register Available PLC: FP2SH/ FP10SH	0	0 to 224
	19	Hold type area starting address setting for file register (for bank 2) Available PLC: FP2SH	0	0 to 32765
	20	Disable or enable setting for duplicated output	Disable	Disable/enable
	21	Operation settings when MEWNET-TR communication error occurs	Stop	Stop/continuation
		Operation setting when I/O error occurs	Stop	Stop/continuation
	22	Operation settings when an intelligent unit error occurs	Stop	Stop/continuation
	23	Operation settings when an I/O verification error occurs	Stop	Stop/continuation
Action on error	24	Operation settings when a system watching dog timer error occurs Available PLC: FP2SH/ FP10SH	Stop	Stop/continuation Set the time-out time for watching dog timer with system register 30.
	25	Operation settings when connection time error occurs in the remote slave station	Stop	Stop/continuation
	26	Operation settings when an operation error occurs	Stop	Stop/continuation
	27	Operation settings when communication error occurs in the MEWNET-F system	Stop	Stop/continuation
	28	Operation settings when error occurs in the slave station of the MEWNET-F system	Stop	Stop/continuation

Item	Add- ress	Name	Default value	Descriptions
	29	Operation time setting for communication processing	240 μs	0 to 52428 μs If the response of the connected programmable display is show, please make the value bigger.
	30	Time-out time setting of system watching dog timer	100 ms	0.4 to 640 ms
Time	31	Multi-frame communication time settings in the computer link and communication time setting for data sending buffer	6500 ms	10 to 81917.5 ms
Time setting for FP2SH/ FP10SH	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions	10000 ms	10 to 81917.5 ms
	33	Effective time setting for monitoring	163837.5 ms	2500 to 163837.5 ms
	34	Constant scan time setting	0 ms: Normal scan	0 to 640 ms: Scans once each specified time interval. Set "0": Normal scan Setting time can be obtained using the formula "Set time" = "Set value" x 0.1 (ms)
	31	Multi-frame communication time settings in the computer link	6500 ms	10.0 to 8190.0 ms
Time setting for FP2	32	Time-out time setting for the F145 (SEND)/P145 (PSEND), F146 (RECV)/P146 (PRECV), F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions	2000 ms	10.0 to 8190.0 ms
	33	Program block-editing time in the RUN mode	10000 μs	800.0 to 52428.0 μs
	34	Constant scan time setting	0 : Normal scan	0 to 640 ms: Scans once each specified time interval. Set "0": Normal scan

Item	Add- ress	Na	me	Default value	Descriptions	
	25	Operation settings when connection time error occurs in the remote slave station Available PLC: FP2SH		Stop	Stop/continuation	
Remote I/O control	35	Operation mode setting when the MEWNET-F system is used		Enabled (wait for connec- tion)	Enabled: CPU starts operation after all the salve stations are recognized. Disabled: CPU starts operation without waiting for slave station connections. Only effective when registering remote I/O allocation.	
	36	I/O data upda settings for M system	MEWNET-F	Scan syn- chronous	Scan asynchronous mode/ Scan synchronous mode	
	40		Size of link relays used for commu- nication	0	0 to 64 words	
	41	Size of link data registers used for commu- nication	0	0 to 128 words		
	42	PC link 0 settings for MEWNET-	Send area starting address of link relay	0	0 to 63	
PC link	43	W/-P link system (*Note)	Size of link relays used for send area	0	0 to 64 words	
0 setting	44		Send area starting address of link data register	0	0 to 127	
	45	Size of link data registers used for send area	0	0 to 127 words		
	46	link system (*Note)	I 1 allocation EWNET-W/-P	Normal allocation	Normal allocation: (PC link 0 for the link unit with a smaller slot number and PC link 1 for one with a larger slot number) Reverse allocation: (PC link 1 for the link unit with a smaller slot number and PC link 0 for one with a larger slot number)	

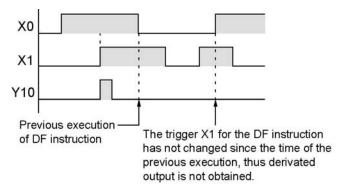
Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH MEWNET-P: FP10SH

Item	Add- ress	Name		Default value	Descriptions
MEWNET -H setting	49	Processing capacity setting for PC link of MEWNET-H link system Available PLC: FP10SH		4 (1024 bytes per scan)	0: All data in a scan 1 to 65535: Setting processing capacity per scan can be obtained using the formula "Capacity" = "Set value" x 256 bytes
	50		Size of link relays used for commu- nication	0	0 to 64 words
	51		Size of link data registers used for commu- nication	0	0 to 128 words
PC link 1	52	PC link 1 settings for MEWNET- W/-P link system (*Note)	Send area starting address of link relay	64	64 to 127
setting	53		Size of link relays used for send area	0	0 to 64 words
	54		Send area starting address of link data register	128	128 to 255
	55		Size of link data registers used for send area	0	0 to 127 words
	410	Unit number setting for tool port Available PLC: FP2/ FP2SH Communication format setting for tool port Available PLC: FP2/ FP2SH		1	1 to 99 (unit No. 1 to 99)
Tool port setting Note) Availal	411			Commu- nication format (character bit): 8 bits, Modem communi- cation: Disabled	Character bits: 7 bits/8bits Modem communication: Enabled/Disabled When connecting a modem, set the unit number to 1 with system register 410.

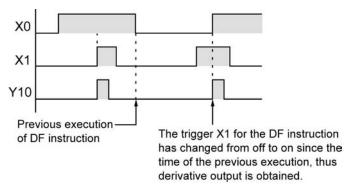

Note) Available PLC MEWNET-W: FP10SH, FP2, FP2SH MEWNET-P: FP10SH

FP2/FP2SH/FP10SH	
------------------	--

Item	Add- ress	Name	Default value	Desc	riptions
Tool port setting	414	Baud rate setting for the tool portIn the FP10SH, when the dip swi SW1 on the CPU is off, the baud setting is effective. In the FP2/FP2SH, when the dip switch SW1 on the rear of the CF off, the baud rate setting is effect 19200 bps 1200 bps 19200 bps 1200 bps 38400 bps 		is off, the baud rate , , when the dip e rear of the CPU is setting is effective.) bps bps bps	
	412	Communication method setting for COM port	method FP2: Not used UNUSED: COM port is not us COMPUTER LINK: computer mode (when connecting C-NE		<pre>C: computer link ecting C-NET)</pre>
COM port setting	413	Communication format setting (Common setting for both computer link and serial data communication) When used for computer link, the start and end code settings of format for MEWTOCOL-COM will not be effective. Available PLC: FP2/ FP2SH	Character bit: 8 bits, Parity chk: "With, odd" Stop bit: 1 bit, End code: CR, Start code: NO STX	Character bit: 7 bits/8 bits Parity chk: non/with odd/with even Stop bit: 1 bit/2 bits End code: CR/CR+LF/NON/ETX Start code: NO STX/STX	
	414	Baud rate setting for the COM port Available PLC: FP2/ FP2SH	19200 bps	19200 bps 19200 bps 1200 bps 38400 bps 5 2400 bps 57600 bps 4800 bps 115200 bps 9600 bps 1 1 to 99 (unit No. 1 to 99)	
	415	Unit number setting for COM port Available PLC: FP2/ FP2SH	1		
	416	Modem compatibility setting for COM port Available PLC: FP2/ FP2SH	Modem disabled	Modem enabled/M When connecting unit number to 1 w 415.	
General commu-	417	Starting address setting for received buffer of serial data communication mode (data register number)	0	FP2SH/FP10SH: 0 to 10240 FP2: 0 to 5999	For details about its usage, refer to the F144 (TRNS)/
nication setting	418	Capacity setting for received buffer of serial data communication mode (word number)	1024	0 to 1024	P144 (PTRNS) instructions.

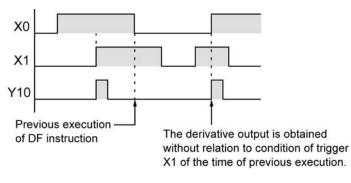

Operation of DF instruction between MC and MCE instructions

When a leading edge detection instruction (DF instruction) is used with the MC and MCE instructions, the derivative output may change as follows depending on the trigger of MC instruction and input timing of DF instruction. Take care regarding this point.

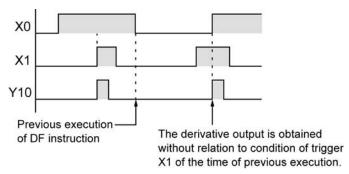


Example 1:

When system register 4 sets 0 (conventional) Time chart 1



Time chart 2



Example 2:

When system register 4 sets 1 (new) Time chart 1

Time chart 2

11.1.2 Table of Special Internal Relays for FP2/FP2SH/FP10SH

on rror occurs. tored in DT90000. error occurs in the /NET-TR network. The ET-TR master unit is T90002 or DT90003. the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is error occurs.
error occurs in the /NET-TR network. The ET-TR master unit is T90002 or DT90003. the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is
/NET-TR network. The ET-TR master unit is T90002 or DT90003. the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is
NET-TR network. The T-TR master unit is T90002 or DT90003. the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is
T-TR master unit is T90002 or DT90003. the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is
T90002 or DT90003. the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is
the I/O unit. The slot was occurred is stored in an intelligent unit. The slot lligent unit is installed is
was occurred is stored in an intelligent unit. The slot ligent unit is installed is
an intelligent unit. The slot lligent unit is installed is
lligent unit is installed is
lligent unit is installed is
-
error occurs.
ere the verification error
0 or DT90011.
ckup battery error occurs.
when a backup battery
n it on
n it on, e of error.
when an operation error
for occurred is stored in
which occurred).
,
the higher byte of
the 2nd program block. In
; H1.
peration error occurs. The
occurred is stored in
new error occurs.
new error occurs.
the higher byte of
the 2nd program block. In
H1.
ccurs.
t instructions.
ompared results become
MP),
IN)/P62 (PWIN) or F63
instructions."
aual in the corrections
qual in the comparison
me 0 in the arithmetic

FP2/FP2SH/FP10SH

Address	Name	Description		
R900C	< Flag	Turns on for an instant when the compared results become smaller in the "F60 (CMP)/P60 (PCMP), F61(DCMP)P61(PDCMP), F62 (WIN)/P62 ,(PWIN) or F63 (DWIN)/P63 (PDWIN) comparison instructions."		
R900D	Auxiliary timer contact	Turns on when the set time elapses (set value reaches 0) in the timing operation of the F137(STMR)/F183(DSTM) auxiliary timer instruction. The R900D turns off when the trigger for auxiliary timer instruction turns off.		
R900E	Tool port error flag	Turns on when communication error at tool port is occurred.		
(*Note)	Available PLC: FP2SH	•		
R900F	Constant scan error	Turns on when the scan time exceeds the time specified in		
D0010	flag	system register 34 during constant scan execution.		
R9010	Always on relay	Always on.		
R9011	Always off relay	Always off.		
R9012	Scan pulse relay	Turns on and off alternately at each scan.		
R9013	Initial on pulse relay	Turns on only at the first scan in the operation.		
		Turns off from the second scan and maintains the off state.		
R9014	Initial off pulse relay	Turns off only at the first scan in the operation.		
		Turns on from the second scan and maintains the on state.		
R9015	Step ladder initial on	Turns on for an instant only in the first scan of the process		
D 0040	pulse relay	the moment step ladder process is opened.		
R9016, R9017	Not used	-		
R9018	0.01 s clock pulse relay	Repeats on/off operations in 0.01 s cycles.		
R9019	0.02 s clock pulse relay	Repeats on/off operations in 0.02 s cycles.		
R901A	0.1 s clock pulse relay	Repeats on/off operations in 0.1 s cycles. $ _{0.1 \text{ s}}^{\bullet} $		
R901B	0.2 s clock pulse relay	Repeats on/off operations in 0.2 s cycles. $ _{0.2 \text{ s}}^{\bullet} $		
R901C	1 s clock pulse relay	Repeats on/off operations in 1 s cycles.		
R901D	2 s clock pulse relay	Repeats on/off operations in 2 s cycles.		
R901E	1 min clock pulse relay	Repeats on/off operations in 1 min cycles.		
R901F	Not used	-		

Note) Used by the system.

Address	Name	Description			
R9020	RUN mode flag	Turns off while the mode selector is set to PROG. Turns on while the mode selector is set to RUN.			
R9021 (*Note)	Test RUN mode flag	Turns on while the initialize/test switch of the CPU is set to TEST and mode selector is set to RUN. (test run operation start) Turns off during the normal RUN mode.			
R9022 (*Note)	Break flag	Turns on while the BRK instruction is executing or the step run is executing.			
R9023 (*Note)	Break enable flag	Turns on while the BRK instruction is enabled in the test RUN mode.			
R9024 (*Note)	Output update enable flag in the test RUN mode	Turns on while the output update is enabled in the test RUN mode.			
R9025 (*Note)	Single instruction flag	Turns on while the single instruction execution is selected in the test RUN mode.			
R9026 (*Note)	Message flag	Turns on while the F149 (MSG)/P149 (PMSG) instruction is executed.			
R9027 (*Note)	Remote mode flagTurns on while the mode selector is set to REMOTE.				
R9028 (*Note)	Break clear flag Turns on when the break operation is cleared.				
R9029 (*Note) ⁾	Forcing flag	Turns on during forced on/off operation for I/O relay and timer/counter contacts.			
R902A (*Note)	External interrupt enable flag (Available PLC: FP2SH/FP10SH)	Turns on while the external interrupt trigger is enabled by the ICTL instruction.			
	Interrupt flag (Available PLC: FP2)	Turns on while the periodical interrupt is executed by the ICTL instruction.			
R902B (*Note)	Interrupt error flag	Turns on when an interrupt error occurs.			
R902C (*Note)	Sampling point flag	Turns off during instructed sampling. Turns on while sampling is triggered by the periodical interrupt.			
R902D (*Note)	Sampling trace end flag	Turns on when the sampling trace ends.			
R902E (*Note)	Sampling trigger flag	Turns on when the sampling trace trigger of the F156 (STRG)/P156 (PSTGR) instruction is turned on.			
R902F (*Note)	Sampling enable flag	Turns on when the starting point of sampling is specified.			

Note) Used by the system.

Address	Name	Description
		Monitors if CPU is in the F145 (SEND)/P145 (PSEND) and
	F145 (SEND)/P145	F146 (RECV)/P146 (PRECV) instructions executable
	(PSEND) and F146	condition as follows:
R9030	(RECV)/P146 (PRECV)	- off: None of the above mentioned instructions can be
	instruction executing	executed.
	flag	- on: One of the above mentioned instructions can be
		executed.
		Monitors if an abnormality has been detected during the
	F145 (SEND)/P145	execution of the F145 (SEND)/P145 (PSEND) and F146
R9031	(PSEND) and F146	(RECV)/P146 (PRECV) instructions as follows:
110001	(RECV)/P146 (PRECV)	- off: No abnormality detected.
	instruction end flag	- on: An abnormality detected. (communication error)
		The error code is stored in DT90039.
		Monitors the mode of the COM port as:
R9032	COM port mode flag	- on: Serial data communication mode
		- off: Computer link mode
R9033	F147 (PR) instruction	Turns on while a F147 (PR) instruction is executed.
	flag	Turns off when a F147 (PR) instruction is not executed.
R9034	Editing in RUN mode flag	Turns on while editing a program in the RUN mode.
		Monitors if FP3/FP10SH is in the F152 (RMRD)/P152
	F152 (RMRD)/P152	(PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions
	(PRMRD) and F153	executable condition as follows:
R9035	(RMWT)/P153	- off: None of the above mentioned instructions can be
	(PRMWT) instruction	executed.
	execution flag	- on: One of the above mentioned instructions can be
		executed.

Address	Name	Description
R9036	F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instruction end flag	Monitors if an abnormality has been detected during the execution of the F152 (RMRD)/P152 (PRMRD) and F153 (RMWT)/P153 (PRMWT) instructions as follows: - off: No abnormality detected. - on: An abnormality detected. (access error) The error code is stored in DT90036.
R9037	COM port communica- tion error flag	Turns on when the serial data communication error occurs using COM port. Turns off when data is being sent by the F144 (TRNS) instruction.
R9038	COM port receive flag	Turns on when the end code is received during the serial data communicating.
R9039	COM port send flag	Turns on while data is not sent during the serial data communicating. Turns off while data is being sent during the serial data communicating.
R903A	Not used	-
R903B	Not used	-
R903C	Not used	-
R903D	Not used	-
R903E	Not used	-
R903F	Not used	-
R9040	Error alarm (0 to 2047) Available PLC: FP2SH/FP10SH	Turns on while the error alarm relay (E0 to E2047) acts. Turns off when the all error alarm relay turns off.

FP2/FP2SH/FP10SH

Address	Name	Description
R9050	MEWNET-W/-P link transmission error flag [W/P LINK 1]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 1. - turns on when there is an error in the link area settings.
R9051	MEWNET-W/-P link transmission error flag [W/P LINK 2]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 2. - turns on when there is an error in the link area settings.
R9052	MEWNET-W/-P link transmission error flag [W/P LINK 3]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 3. - turns on when there is an error in the link area settings.
R9053	MEWNET-W/-P link transmission error flag [W/P LINK 4]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 4. - turns on when there is an error in the link area settings.
R9054	MEWNET-W/-P link transmission error flag [W/P LINK 5]	When using MEWNET-W link unit or MEWNET-P link unit: - turns on when transmission error occurs at link 5. - turns on when there is an error in the link area settings.
R9055	Not used	-
R9056	Not used	-
R9057	Not used	-
R9058	Remote I/O transmission error flag (master 1)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 1. - turns on when there is an error in the settings.
R9059	Remote I/O transmission error flag (master 2)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 2. - turns on when there is an error in the settings.
R905A	Remote I/O transmission error flag (master 3)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 3. - turns on when there is an error in the settings.
R905B	Remote I/O transmission error flag (master 4)	When using MEWNET -F (remote I/O) system: - turns on when transmission error occurs on master 4. - turns on when there is an error in the settings.
R905C to R905F	Not used	-

Address	Name		Description
R9060		Unit No.1	Turns on when Unit No. 1 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9061		Unit No.2	Turns on when Unit No. 2 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9062		Unit No.3	Turns on when Unit No. 3 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9063		Unit No.4	Turns on when Unit No. 4 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9064		Unit No.5	Turns on when Unit No. 5 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9065		Unit No.6	Turns on when Unit No. 6 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9066	MEWNET-W/	Unit No 7	Turns on when Unit No. 7 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9067	PC link transmission assurance relay [for PC Unit No.8 link mode. Turns off when operation occurs, or when not in the PC link Unit new relay [for PC Unit No.9 Turns on when Unit No.9 is community of the operation of the pc link		Turns on when Unit No. 8 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9068		Turns on when Unit No. 9 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.	
R9069	(*Note)	Unit No.10	Turns on when Unit No. 10 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906A		Unit No.11	Turns on when Unit No. 11 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906B		Unit No.12	Turns on when Unit No. 12 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906C		Unit No.13	Turns on when Unit No. 13 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906D	-	Unit No.14	Turns on when Unit No. 14 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906E		Unit No.15	Turns on when Unit No. 15 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R906F		Unit No.16	Turns on when Unit No. 16 is communicating properly I n the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.

FP2/FP2SH/FP10SH

Address	Name	-	Description		
R9070		Unit	Turns on when unit No. 1 is in the RUN mode.		
13070		No.1	Turns off when unit No. 1 is in the PROG. mode.		
R9071		Unit	Turns on when unit No. 2 is in the RUN mode.		
K907 I		No.2	Turns off when unit No. 2 is in the PROG. mode.		
R9072		Unit	Turns on when unit No. 3 is in the RUN mode.		
N9072		No.3	Turns off when unit No. 3 is in the PROG. mode.		
R9073		Unit	Turns on when unit No. 4 is in the RUN mode.		
13075		No.4	Turns off when unit No. 4 is in the PROG. mode.		
R9074		Unit	Turns on when unit No. 5 is in the RUN mode.		
1\3074	-	No.5	Turns off when unit No. 5 is in the PROG. mode.		
R9075		Unit	Turns on when unit No. 6 is in the RUN mode.		
13075	-	No.6	Turns off when unit No. 6 is in the PROG. mode.		
R9076		Unit	Turns on when unit No. 7 is in the RUN mode.		
13070	MEWNET-W/-P	No.7	Turns off when unit No. 7 is in the PROG. mode.		
R9077	PC link	Unit	Turns on when unit No. 8 is in the RUN mode.		
Koon	operation	No.8	Turns off when unit No. 8 is in the PROG. mode.		
R9078	mode relay	Unit	Turns on when unit No. 9 is in the RUN mode.		
1.3070	[for PC link 0	No.9	Turns off when unit No. 9 is in the PROG. mode.		
R9079	(W/P)]	Unit	Turns on when unit No. 10 is in the RUN mode.		
1.3073	_	No.10	Turns off when unit No. 10 is in the PROG. mode.		
R907A		Unit	Turns on when unit No. 11 is in the RUN mode.		
NJUTA	_	No.11	Turns off when unit No. 11 is in the PROG. mode.		
R907B		Unit	Turns on when unit No. 12 is in the RUN mode.		
N307B	-	No.12	Turns off when unit No. 12 is in the PROG. mode.		
R907C		Unit	Turns on when unit No. 13 is in the RUN mode.		
1.3070	_	No.13	Turns off when unit No. 13 is in the PROG. mode.		
R907D		Unit	Turns on when unit No. 14 is in the RUN mode.		
		No.14	Turns off when unit No. 14 is in the PROG. mode.		
R907E		Unit	Turns on when unit No. 15 is in the RUN mode.		
		No.15	Turns off when unit No. 15 is in the PROG. mode.		
R907F		Unit	Turns on when unit No. 16 is in the RUN mode.		
N307F		No.16	Turns off when unit No. 16 is in the PROG. mode.		

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.

Address	Name		Description
R9080		Unit No.1	Turns on when unit No. 1 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9081		Unit No.2	Turns on when unit No. 2 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9082		Unit No.3	Turns on when unit No. 3 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9083		Unit No.4	Turns on when unit No. 4 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9084		Unit No.5	Turns on when unit No. 5 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9085		Unit No.6	Turns on when unit No. 6 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9086		Unit No.7	Turns on when unit No. 7 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9087	MEWNET-W/-P PC link transmission	Unit No.8	Turns on when unit No. 8 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9088	assurance relay [for PC link 1 (W/D)] (*Nete)	Unit No.9	Turns on when unit No. 9 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R9089	(W/P)] (*Note)	Unit No.10	Turns on when unit No. 10 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908A		Unit No.11	Turns on when unit No. 11 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908B		Unit No.12	Turns on when unit No. 12 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908C		Unit No.13	Turns on when unit No. 13 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908D		Unit No.14	Turns on when unit No. 14 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908E		Unit No.15	Turns on when unit No. 15 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.
R908F		Unit No.16	Turns on when unit No. 16 is communicating properly in the PC link mode. Turns off when operation is stopped, when an error occurs, or when not in the PC link mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.

FP2/FP2SH/FP10SH

Address	Name		Description
R9090		Unit	Turns on when unit No. 1 is in the RUN mode.
113030		No.1	Turns off when unit No. 1 is in the PROG. mode.
R9091		Unit	Turns on when unit No. 2 is in the RUN mode.
113031		No.2	Turns off when unit No. 2 is in the PROG. mode.
R9092		Unit	Turns on when unit No. 3 is in the RUN mode.
119092		No.3	Turns off when unit No. 3 is in the PROG. mode.
R9093		Unit	Turns on when unit No. 4 is in the RUN mode.
1,3035		No.4	Turns off when unit No. 4 is in the PROG. mode.
R9094		Unit	Turns on when unit No. 5 is in the RUN mode.
113034		No.5	Turns off when unit No. 5 is in the PROG. mode.
R9095		Unit	Turns on when unit No. 6 is in the RUN mode.
1.0000		No.6	Turns off when unit No. 6 is in the PROG. mode.
R9096		Unit	Turns on when unit No. 7 is in the RUN mode.
110000	MEWNET-W/-P	No.7	Turns off when unit No. 7 is in the PROG. mode.
R9097	PC link	Unit	Turns on when unit No. 8 is in the RUN mode.
	operation mode	No.8	Turns off when unit No. 8 is in the PROG. mode.
R9098	relay	Unit	Turns on when unit No. 9 is in the RUN mode.
	[for PC link 1	No.9	Turns off when unit No. 9 is in the PROG. mode.
R9099	(W/P)] (*Note)	Unit	Turns on when unit No. 10 is in the RUN mode.
		No.10	Turns off when unit No. 10 is in the PROG. mode.
R909A		Unit	Turns on when unit No. 11 is in the RUN mode.
		No.11	Turns off when unit No. 11 is in the PROG. mode.
R909B		Unit	Turns on when unit No. 12 is in the RUN mode.
		No.12	Turns off when unit No. 12 is in the PROG. mode.
R909C		Unit	Turns on when unit No. 13 is in the RUN mode.
		No.13	Turns off when unit No. 13 is in the PROG. mode.
R909D		Unit	Turns on when unit No. 14 is in the RUN mode.
		No.14	Turns off when unit No. 14 is in the PROG. mode.
R909E		Unit	Turns on when unit No. 15 is in the RUN mode.
		No.15	Turns off when unit No. 15 is in the PROG. mode.
R909F		Unit	Turns on when unit No. 16 is in the RUN mode.
		No.16	Turns off when unit No. 16 is in the PROG. mode.

Note) When the system registers 46=K0, PC link 0 for the link unit with a smaller slot No. and PC link 1 for one with a larger slot No.

Address	Name	Description
R9100	IC memory card installation flag (Available PLC: FP2SH/ FP10SH)	Monitors whether the IC memory card is installed or not: - on: IC memory card is installed. - off: IC memory card is not installed.
R9101 (*Note)	IC memory card backup battery flag 1 (Available PLC: FP2SH/ FP10SH)	Monitors the voltage drop condition for the IC memory card as: - on: Data in the IC memory card cannot be guaranteed. - off: Data in the IC memory card can be maintained.
R9102 (*Note)	IC memory card backup battery flag 2 (Available PLC: FP2SH/ FP10SH)	Monitors the voltage drop condition for the IC memory card as: FP2SH: - on: Battery charge or replacement is required. - off: Battery charge or replacement is not required. FP10SH: - on: Battery replacement is required. - off: Battery replacement is not required.
R9103	IC memory card protect switch flag (Available PLC: FP2SH/ FP10SH)	Monitors the protective condition of the IC memory card as: - on: The protect switch is not in the write-protected (WP) position. - off: The protect switch is in the write-protected (WP) position.
R9104 R9105	IC memory card access switch flag (Available PLC: FP2SH/ FP10SH)	Monitors the condition of the IC memory card access enables switch as: - on (access enabled): The access enable switch is in the on position. - off (access disabled): The access enable switch is in the off position.
to R910F	Not used	-

Note) The IC memory card backup battery condition can be judged using special internal relays R9101 and R9102 as follows:

R9101	R9102	IC memory card condition
OFF	OFF	Not battery charge (replacement) required.
ON	OFF	Charge (replace) backup battery.
		The data in the IC memory card is maintained.
ON	ON	The data in the IC memory card cannot be maintained.
		Charge (replace) backup battery.

11.1.3 Special Data Registers for FP2/FP2SH/FP10SH/FP3

Add	Iress		í literatura de la construcción de		
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9000	DT90000	Self-diagnostic error code	The self-diagnostic error code is stored here when a self-diagnostic error occurs. Monitor the error code using decimal display.	A	N/A
DT9001	DT90001	Not used	-	N/A	N/A
DT9002	DT90002	Communication error of MEWNET-TR master unit (slot No. 0 to 15) (Available PLC: FP3/FP10SH) Position of abnormal I/O slot (slot No. 0 to 15) (Available PLC: FP2/FP2SH)	The slot number, where an erroneous unit is installed, can be monitored here. "1" (on) is set in the bit position corresponding to the slot number when one of the errors below id detected. Communication error MEWNET-TR master unit When a communication error occurs at the MEWNET-TR master unit, the bit corresponding to the slot no. of the unit will be set on "1". Monitor using binary display. (1: erroneous MEWNET-TR master unit,		N/A
DT9003	DT90003	Communication error of MEWNET-TR master unit (slot No. 16 to 31) (Available PLC: FP3/FP10SH) Position of abnormal I/O slot (slot No. 16 to 31) (Available PLC: FP2/FP2SH)	0: normal) Position of abnormal I/O slot When an error occurs at an I/O unit, the bit corresponding to the slot of the unit will be set on "1". Monitor using binary display. (1: error, 0: normal) Bit position 15 . 21 11 . 8 7 . 4 3 . 0 Slot No. 15 . 21 11 . 8 7 . 4 3 . 0 Slot No. 15 . 21 11 . 8 7 . 4 3 . 0 Bit position 15 . 12 11 . 8 7 . 4 3 . 0 Slot No. 31 . 28 27 . 24 23 . 20 19 . 16 DT90020T90003	A	N/A

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

	dress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9006	DT90006	Abnormal intelligent unit (slot No. 0 to 15)	When an error condition is detected in an intelligent unit, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display. (1: abnormal intelligent unit, 0: normal intelligent unit)		
DT9007	DT90007	Abnormal intelligent unit (slot No. 16 to 31)	Bit position 15 . 21 11 . 8 7 . 4 3 . 0 Slot No. 15 . 21 11 . 8 7 . 4 3 . 0 DT9006DT90006 . </td <td></td>		
DT9010	DT90010	I/O verify error unit (slot No. 0 to 15)	When the state of installation of an I/O unit has changed since the power was turned on, the bit corresponding to the slot of the unit will be set to on. Monitor using binary display. (1: error, 0: normal)		
DT9011	DT90011	I/O verify error unit (slot No. 16 to 31)	Bit position 15 . 21 11 . 8 7 . 4 3 . 0 Slot No. 15 . 21 11 . 8 7 . 4 3 . 0 DT9010DT90010 0 Bit position 15 . 12 11 . 8 7 . 4 3 . 0 Slot No. 31 . 28 27 . 24 23 . 20 19 . 16 DT9011/DT90011	A	N/A
DT9014	DT90014	Auxiliary register for operation	One shift-out hexadecimal digit is stored in bit positions 0 to 3 when F105 (BSR)/P105 (PBSR) or f106 (BSL)/P106 (PBSL) instruction is executed.		
DT9015	DT90015	Auxiliary register for	The divided remainder (16-bit) is stored in DT9015/DT90015 when F32 (%)/P32 (P%) or F52(B%)/P52 (PB%) instruction is executed. The divided remainder (32-bit) is stored		
DT9016	DT90016	operation	in DT9015 and DT9016/DT90015 and DT90016 when F33 (D%)/P33 (PD%) or F53(DB%)/P53 (PDB%) instruction is executed.		
DT9017	DT90017	Operation error address (hold)	After commencing operation, the address where the first operation error occurred is stored. Monitor the address using decimal display. FP2SH: When the higher byte of DT90257 is H2, the error occurs in the 2nd program block. In case of the 1st program block, it is H1.		

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

	Address				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9018	DT90018	Operation error address (non-hold)	The address where an operation error occurred is stored. Each time an error occurs, the new address overwrites the previous address. At the beginning of scan, the addresses 0. Monitor the address using decimal display. FP2SH: When the higher byte of DT90257 is H2, the error occurs in the 2nd program block. In case of the 1st program block, it is H1.	А	N/A
DT9019	DT90019	2.5 ms ring counter	The data stored here is increased by one every 2.5 ms (H0 to HFFFF) Difference between the values of the two points (absolute value) x 2.5 ms = Elapsed time between the two points.		
DT9020	-	Maximum value of program (Available PLC: FP3)	The last address of sequence program area set in system register 0 is stored.		
	DT90020	Display of program capacity (Available PLC: FP10SH)	The program capacity is stored in decimal. Example: K30: approx. 30 K steps K60: approx. 60 K steps (with memory expansion)		
	5130020	Display of program capacity (Available PLC: FP2)	The program capacity is stored in decimal. Example: K16: approx. 16 K steps (K15870) K32: approx. 32 K steps (with memory expansion)	N/A	N/A
DT9021 (*Note)	-	Maximum value of file register (Available PLC: FP3)	The maximum (last) address of the file registers available are stored in here.		
-	DT90021 (*Note)	Maximum value of file register (Available PLC: FP2/FP10SH)	The maximum (last) address of the file registers available are stored in here.		

FP2/FP2SH/FP10SH/FP3	(A: Available.	N/A: Not available)
	(,	

FP3	FP2/ FP2SH FP10SH	Name	Description	S	Read- ing	Writ- ing
DT9022	DT90022	Scan time (current value)	The current scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 Example: K50 indicates 5 ms.	Scan time display is only possible in RUN mode, and shows the		
DT9023	DT90023	Scan time (minimum value)	The minimum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 Example: K50 indicates 5 ms.	operation cycle time. The maximum and minimum values are cleared when each		
DT9024	DT90024	Scan time (maximum value)	The maximum scan time is stored here. Scan time is calculated using the formula: Scan time (ms) = stored data (decimal) x 0.1 Example: K125 indicates 12.5 ms.	the mode is switched between RUN mode and PROG. mode.	А	N/A
DT9025 (*Note)	DT90025	Mask condition monitoring register for interrupt unit initiated interrupts (INT 0 to 15) (*FP2: Not used)	The mask conditions of int initiated interrupts using IC can be monitored here. Mo binary display. Bit position 15 12 11 8 7 INT program 15 12 11 8 7 DT90250T90025	TL instruction onitor using 7 4 7 4 8 0 7 4 9 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10 0		
DT9026 (*Note)	DT90026	Mask condition monitoring register for interrupt unit initiated interrupts (INT 16 to 23) (*FP2: Not used)	The mask conditions of int initiated interrupts using IC can be monitored here. Mo binary display. Bit position 15 12 11 8 7 INT program 2 DT90260T90026 1	mask conditions of interrupt unit ted interrupts using ICTL instruction be monitored here. Monitor using y display.		
DT9027 (*Note)	DT90027	Periodical interrupt interval (INT24)	The value set by ICTL inst stored. K0: periodical interrupt is r K1 to K3000: 10ms to 30s 1.5s	ruction is not used.		

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

FP3	fress FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing			
DT9028 (*Note)	DT90028	Sample trace interval	The value registered using programming tool software is stored. - K0: sampling triggered by F155 (SMPL)/P155 (PSMPL) instruction - K1 to K3000 (x 10ms): 10ms to 30s					
DT9029 (*Note)	DT90029	Break address	The address (K constant) of a break in a test run is stored.					
DT9030 (*Note)	DT90030	Message 0						
DT9031 (*Note)	DT90031	Message 1		A	N/A			
DT9032 (*Note)	DT90032	Message 2	The contents of the specified message are stored in these special data registers					
DT9033 (*Note)	DT90033	Message 3	when F149 (MSG)/P149 (PMSG) instruction is executed.					
DT9034 (*Note)	DT90034	Message 4						
DT9035 (*Note)	DT90035	Message 5						
DT9036	DT90036	F152 (RMRD)/ P152 (PRMRD) and F153 (RMWT)/ P153 (PRMWT) instructions end code	The error code is stored here if F152 (RMRD)/P152 (PRMRD) or F153 (RMWT)/P153 (PRMWT) instruction was executed abnormally. When the instruction was successfully executed, "0" is stored.	A	N/A			
					Abnormal unit display	If an abnormal unit is installed to the backplane, the slot number of that unit will be stored. Monitor using decimal display.		
DT9037	DT90037	Work 1 for F96 (SRC)/ P96 (PSRC) instructions	The number of data that match the searched data is stored here when F96 (SRC)/P96 (PSRC) instruction is executed.	А	А			
DT9038	DT90038	Work 2 for F96 (SRC)/ P96 (PSRC) instructions	The position of the first matching data, counting from the starting 16-bit area, is stored here when an F96 (SRC)/P96 (PSRC) instruction is executed.	~	•			
DT9039	DT90039	F145 (SEND)/ P145 (PSEND) and F146 (RECV)/ P146 (PRECV) instructions end code	The error code is stored here if F145 (SEND)/P145 (PSEND) or F146 (RECV)/ P146 (PRECV) instruction was executed abnormally. When the instruction was successfully executed, "0" is stored.	A	N/A			

FP2/FP2SH/FP10SH/FP3	(A: Available.	N/A: Not available)
	(,	

Address					
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9053	DT90053	Real-Time Clock (Clock/Calendar) monitor (hour/minute)	Hour and minute data of the Real-Time Clock(Clock/Calendar) are stored here. This data is read-only data. It cannot be overwritten. Higher 8 bits Lower 8 bits Hour data Minute data Hou to H23 (BCD) HO0 to H59 (BCD)	A	N/A
DT9054	DT90054	Real-Time Clock (Clock/Calendar) monitor and setting (minute/second)	The year, month, day, hour, minute, second and day-of-the-week data for the calendar timer is stored. The built-in Real-Time Clock(Clock/Calendar) will operate correctly through the year 2099 and supports leap years.		
DT9055	DT90055	Real-Time Clock (Clock/Calendar) monitor and setting (day/hour)	The Real-Time Clock (Clock/Calendar) can be set (the time set) by writing a value using a programming tool software or a program that uses the F0 (MV) transfer	_	
DT9056	DT90056	Real-Time Clock (Clock/Calendar) monitor and setting (year/month)	Instruction.	A	A
DT9057	DT90057	Real-Time Clock (Clock/Calendar) monitor and setting (day-of- the-week)	DT90054 H00 to H59 (BCD) H00 to H59 (BCD) DT9055/ Day data Hour data DT90055 H01 to H31 (BCD) H00 to H23 (BCD) DT9056/ Year data Month data DT90056 H00 to H99 (BCD) H01 to H12 (BCD) DT9057/ Day-of-the-week data DT90057 H00 to H06 (BCD) H00 to H06 (BCD)		

Ado	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9058	DT90058	Real-Time Clock (Clock /Calendar) setting and 30 seconds correction	The Real-Time Clock(Clock/Calendar) is adjusted as follows. When setting the Real-Time Clock (Clock/Calendar) by program By setting the highest bit of DT9058/DT90058 to 1, the time becomes that written to DT9054 to DT9057/DT90054 to DT90057 by F0 (MV) instruction. After the time is set, DT9058/DT90058 is cleared to 0. (Cannot be performed with any instruction other than F0 (MV) instruction.) <example> Set the time to 12:00:00 on the 5th day when the X0 turns on. <math display="block">\begin{vmatrix} X0 \\ H \\ \hline CDF \\ F0 MV, H 0, DT9054 \\ F0 MV, H 512, DT9055 \\ F0 MV, H 512, DT9058 \\ F0 MV, H 8000, DT9058 \\ F0 MV, H8000, DT9058 \\ Sets the time If you changed the values of DT9054 to DT9057/DT90054 to DT90057 with programming tool software, the time will be set when the new values are written. Therefore, it is unnecessary to write to DT9058/DT90058. When the correcting times less than 30 seconds- By setting the lowest bit of DT9058/DT90058 to 1, the value will be moved up or down and become exactly 0 seconds. After the correction is completed, DT9058/DT90058 is cleared to 0. <example> Correct to 0 seconds with X0 turns on. $\begin{vmatrix} X0 \\ H \\ COFF \\ F0 MV, H 1, DT9058 \end{vmatrix} Correct to 0 second. At the time of correction, if between 0 and 29 seconds, it will be moved down, and if the between 30 and 59 seconds, it will be moved up. In the example above, if the time was 5 minutes 29 seconds, it will become 5 minutes 35 seconds, it will become 6 minutes 0 second.$</example></math></example>	A	A

FP2/FP2SH/FP10SH/FP3	(A: Available.	N/A: Not available)
	(,	

Ado	ress			Bood	\A/~:+
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9059 (*Note)	DT90059	Serial communication error code	The system uses this as a communication status when communication error occurs.	A	N/A
DT9060	DT90060	Step ladder process (0 to 15)			
DT9061	DT90061	Step ladder process (16 to 31)			
DT9062	DT90062	Step ladder process (32 to 47)			
DT9063	DT90063	Step ladder process (48 to 63)			
DT9064	DT90064	Step ladder process (64 to 79)	Indicates the startup condition of the		
DT9065	DT90065	Step ladder process (80 to 95)	step ladder process. When the process starts up, the bit corresponding to the		
DT9066	DT90066	Step ladder pro- cess (96 to 111)	process number turns on "1".		
DT9067	DT90067	Step ladder pro- cess (112 to 127)	Monitor using binary display.		
DT9068	DT90068	Step ladder pro- cess (128 to 143)	(0: not-executing, 1: executing)		
DT9069	DT90069	Step ladder pro- cess (144 to 159)	Bit position 15 . 12 11 . 8 7 . 4 3 . 0 Process number 15 . 12 11 . 8 7 . 4 3 . 0	A	A
DT9070	DT90070	Step ladder pro- cess (160 to 175)			
DT9071	DT90071	Step ladder pro- cess (176 to 191)	Since bit position 0 of DT9060/DT90060 is "1", step ladder		
DT9072	DT90072	Step ladder pro- cess (192 to 207)	process 0 is executing.		
DT9073	DT90073	Step ladder pro- cess (208 to 223)	A programming tool software can be used to write data.		
DT9074	DT90074	Step ladder pro- cess (224 to 239)			
DT9075	DT90075	Step ladder pro- cess (240 to 255)			
DT9076	DT90076	Step ladder pro- cess (256 to 271)			
DT9077	DT90077	Step ladder pro- cess (272 to 287)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address					
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9078	DT90078	Step ladder pro- cess (288 to 303)			
DT9079	DT90079	Step ladder pro- cess (304 to 319)			
DT9080	DT90080	Step ladder pro- cess (320 to 335)			
DT9081	DT90081	Step ladder pro- cess (336 to 351)			
DT9082	DT90082	Step ladder pro- cess (352 to 367)			
DT9083	DT90083	Step ladder pro- cess (368 to 383)			
DT9084	DT90084	Step ladder pro- cess (384 to 399)	Indicates the startup condition of the step ladder process. When the		
DT9085	DT90085	Step ladder pro- cess (400 to 415)	process starts up, the bit corresponding to the process number		
DT9086	DT90086	Step ladder pro- cess (416 to 431)	turns on "1".		
DT9087	DT90087	Step ladder pro- cess (432 to 447)	Monitor using binary display.		
DT9088	DT90088	Step ladder pro- cess (448 to 463)	(0: not-executing, 1: executing)	А	^
DT9089	DT90089	Step ladder pro- cess (464 to 479)	Example: Bit position 15 12 11	A	A
DT9090	DT90090	Step ladder pro- cess (480 to 495)	Process number [335] 332 331 323 324		
DT9091	DT90091	Step ladder pro- cess (496 to 511)	Since bit position 0 of DT9080/DT90080 is "1", step ladder		
DT9092	DT90092	Step ladder pro- cess (512 to 527)	process 320 is executing.		
DT9093	DT90093	Step ladder pro- cess (528 to 543)	A programming tool software can be used to write data.		
DT9094	DT90094	Step ladder pro- cess (544 to 559)			
DT9095	DT90095	Step ladder pro- cess (560 to 575)			
DT9096	DT90096	Step ladder pro- cess (576 to 591)			
DT9097	DT90097	Step ladder pro- cess (592 to 607)			
DT9098	DT90098	Step ladder pro- cess (608 to 623)			
DT9099	DT90099	Step ladder pro- cess (624 to 639)			

Address					
	FP2/	Name	Descriptions	Read-	Writ-
FP3	FP2SH	Indille	Descriptions	ing	ing
	FP10SH			-	
DT9100	DT90100	Step ladder pro-			
	-	cess (640 to 655) Step ladder pro-			
DT9101	DT90101	cess (656 to 671)			
DT9102	DT90102	Step ladder pro-			
013102	D130102	cess (672 to 687)			
DT9103	DT90103	Step ladder pro- cess (688 to 703)			
DT0404	DTOOLOA	Step ladder pro-			
DT9104	DT90104	cess (704 to 719)			
DT9105	DT90105	Step ladder pro-			
		cess (720 to 735) Step ladder pro-			
DT9106	DT90106	cess (736 to 751)	Indicates the startup condition of the		
DT9107	DT90107	Step ladder pro-	step ladder process. When the		
Biolor	Broorer	cess (752 to 767)	process starts up, the bit		
DT9108	DT90108		corresponding to the process number		
DT0100	DT90109	Step ladder pro-	pladder pro-		
DT9109	D190109	cess (784 to 799)			
DT9110	DT90110	Step ladder pro- cess (800 to 815)	Monitor using binary display.		
	DEGGA		Step ladder pro- (0: not-executing, 1: executing)		
DT9111	DT90111	cess (816 to 831))		
DT9112	DT90112	Step ladder pro-	Example:	А	А
		cess (832 to 847) Step ladder pro-	Bit position 15 12 11 8 7 4 3 0		
DT9113	DT90113	cess (848 to 863)	Process number 655 . 652 651 . 648 647 . 644 643 . 640 DT9100/DT90100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
DT9114	DT90114	Step ladder pro-			
	2.00111	cess (864 to 879)	Since bit position 0 of		
DT9115	DT90115	Step ladder pro- cess (880 to 895)	DT9100/DT90100 is "1", step ladder		
DT9116	DT90116	Step ladder pro-	process 640 is executing.		
DISTIC	D190110	cess (896 to 911)			
DT9117	DT90117	Step ladder pro- cess (912 to 927)	A programming tool software can be		
DTOLLO	DTOOLO	Step ladder pro-	used to write data.		
DT9118	DT90118	cess (928 to 943)			
DT9119	DT90119	Step ladder pro-			
		cess (944 to 959) Step ladder pro-			
DT9120	DT90120	cess (960 to 975)			
DT0404	DTOOLOA	Step ladder pro-			
DT9121	DT90121	cess (976 to 991)			
		Step ladder pro-			
DT9122	DT90122	cess (992 to 999)			
	5100122	(higher byte is not			
		used.)			

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Ado	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9123	DT90123	Not used	-		
DT9124	DT90124	Not used	-	N/A	N/A
DT9125	DT90125	Not used	-		
DT9126 (*Note)	DT90126	Forced on/off operating station display	This displays the unit number that has executed forced on/off operation.		
DT9127 (*Note)	DT90127	MEWNET-F	The number of times, which MEWNET-F remote I/O service was performed by each master, is stored. Higher 8 bits Lower 8 bits	A	N/A
DT9128 (*Note)	DT90128	system remote I/O service time	The number of times, which MEWNET-F remote I/O service was performed by each master, is stored. Higher 8 bits Lower 8 bits For master 4 For master 3		
DT9129	DT90129	Not used	-	N/A	N/A
DT9130	DT90130	Not used	-		
DT9131	DT90131	MEWNET-F (remote I/O) slave stations abnormality checking (for selecting the display contents and master of DT9132 to DT9135/DT90132 to DT90135)	The contents displayed by DT9132 to DT9135/DT90132 to DT90135 will change depending on the contents of stored in DT9131/DT90131. Use the programming tools software to write the settings for what you want to display (this can also be done with the F0 (MV) move instruction). Set the code (H0 or H1) specifying the display contents in the higher 8 bits and set the code (H0 to H3) specifying the display master in the lower 8 bits. DT9131 Higher 8 bits Lower 8 bits. DT90131 Higher 8 bits Lower 8 bits H0: Abnormal slave station H1: I/O verify abnormal slave station Slave station where momentary voltage drop is occurring	А	N/A

7100				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing
		MEWNET-F (remote I/O) error slave station number – current condition (when DT9131/ DT90131 is H0, H1, H2 or H3)	The bit corresponding to the station number of the MEWNET-F where an error is occurring is set to on. Monitor using binary display. (1: Error slave station, 0: Normal slave station) Bit position $15 \cdot 12 11 \cdot 8 7 \cdot 4 3 \cdot 0$ Slave station no. $16 \cdot 13 12 \cdot 9 8 \cdot 5 4 \cdot 1$ DT9132DT90132	
DT9132 DT9133	DT90132 DT90133	MEWNET-F (remote I/O) I/O verify error slave station number (when DT9131/ DT90131 is H100, H101, H102 or H103)	When the installed condition of a MEWNET-F slave station set unit has changed since the power was turned on, the bit corresponding to that slave station number will be set to on. Monitor using binary display. (1: Error slave station, 0: Normal slave station) Bit position 15 . 12 11 . 8 7 . 4 3 . 0 Slave station no. 16 . 13 12 . 9 8 . 5 4 . 1 DT9132DT90132 Bit position 15 . 12 11 . 8 7 . 4 3 . 0 Slave station no. 32 . 29 28 . 25 24 . 21 20 . 17 DT9133DT90133	A
		MEWNET-F (remote I/O) error	The bit corresponding to the slave station number of the MEWNET-F where an error is occurring will be set to on. Monitor using binary display.	

slave station number – record

(when DT9131/

DT90131 is H0,

H1, H2 or H3)

MEWNET-F

(remote I/O)

momentary

voltage drop slave

station number

(when DT9131/

H101, H102 or

H103)

DT90131 is H100,

DT9134

DT9135

DT90134

DT90135

Writing

N/A

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address ED2/

station)

Bit position 15

Slave station no. 16

DT9134/DT90134

Bit position 15

Slave station no. 32

DT9135/DT90135

binary display.

station)

Bit position 15 .

Slave station no. 16

DT9134/DT90134

Bit position 15

Slave station no. 32

DT9135/DT90135

(1: Error slave station, 0: Normal slave

8 7

9 8

8 7

25 24

8 7

9 8

8 7

25 24

4 3

5 4

4 3

21 20

4 3

5 4

4 3

21 20

0

1

0

17

0

1

0

17

12 11

13 12

12 11

29 28

MEWNET-F slave station set, the bit

number will be set to on. Monitor using

(1: Error slave station, 0: Normal slave

corresponding to that slave station

12 11

13 12

12 11

29 28

If a momentary voltage drop at

Add	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9136 DT9137	DT90136 DT90137	Error code of MEWNET-F (remote I/O) system	Display the error conditions for 8 types of errors using 1 byte. (1: Abnormal condition, 0: Normal condition) Communication error Transmission error Illegal unit error Illegal unit error Slot number error I/O mapping error Momentary voltage drop error Abnormal I/O unit error Higher 8 bits DT9136/DT90136 For master 2 For master 4 For master 3	A	N/A
DT9138	DT90138	Not used	-	N/A	N/A
DT9139	DT90139	Not used	-	IN/A	IN/A
DT9140	DT90140		The number of times the receiving operation is performed (counted using ring counter)		
DT9141 (*Note1)	DT90141		The current interval between two receiving operations: value in the register x 2.5 ms		
DT9142 (*Note1)	DT90142	MEWNET- W/-P	The minimum interval between two receiving operations: value in the register x 2.5 ms		
DT9143 (*Note1)	DT90143	PC(PLC) link status	The maximum interval between two receiving operations: value in the register x 2.5 ms	N/A	N/A
DT9144 (*Note1)	DT90144	[PC(PLC) link 0	The number of times the sending operation is performed (counted using ring counter)	N/A	N/A
DT9145 (*Note1)	DT90145	(W/P)] (*Note2, 3)	The current interval between two sending operations: value in the register x 2.5 ms		
DT9146 (*Note1)	DT90146		The minimum interval between two sending operations: value in the register x 2.5 ms		
DT9147 (*Note1)	DT90147		The maximum interval between two sending operations: value in the register x 2.5 ms		

Note1) Used by the system.

Note2) When the system register 46 = K0, First: PC(PLC) link 0, second: PC(PLC) link 1 When the system register 46 = K1, First: PC(PLC) link 1, second: PC(PLC) link 0

Note3) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH

For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 ((A: Available,	N/A:	Not available)

Add	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9148 (*Note1)	DT90148		The number of times the receiving operation is performed (counted using ring counter)		
DT9149 (*Note1)	DT90149		The current interval between two receiving operations: value in the register x 2.5 ms		
DT9150 (*Note1)	DT90150	MEWNET- W/-P	The minimum interval between two receiving operations: value in the register x 2.5 ms		
DT9151 (*Note1)	DT90151	PC(PLC) link status	The maximum interval between two receiving operations: value in the register x 2.5 ms		
DT9152 (*Note1)	DT90152	[PC(PLC) link 1	The number of times the sending operation is performed (counted using ring counter)		
DT9153 (*Note1)	DT90153	(W/P)] (*Note2, 3)	The current interval between two sending operations: value in the register x 2.5 ms		
DT9154 (*Note1)	DT90154		The minimum interval between two sending operations: value in the register x 2.5 ms		
DT9155 (*Note1)	DT90155		The maximum interval between two sending operations: value in the register x 2.5 ms	N/A	N/A
DT9156 (*Note1)	DT90156	MEWNET- W/-P PC(PLC)	Area used for measurement of receiving interval.		
DT9157 (*Note1)	DT90157	link status [PC(PLC) link 0 (W/P)] (*Note2, 3)	Area used for measurement of sending interval.		
DT9158 (*Note1)	DT90158	MEWNET- W/-P PC(PLC)	Area used for measurement of receiving interval.		
DT9159 (*Note1)	DT90159	link status [PC(PLC) link 1 (W/P)] (*Note2, 3)	Area used for measurement of sending interval.		

Note2) When the system register 46 = K0, First: PC(PLC) link 0, second: PC(PLC) link 1 When the system register 46 = K1, First: PC(PLC) link 1, second: PC(PLC) link 0 Note3) For MEWNET-W system, available PLC type: FP2/FP2SH/FP3/FP10SH

For MEWNET-P system, available PLC type: FP3/FP10SH

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

	iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9160	DT90160	Link unit no. [W/P link 1] (*Note)	Stores the unit No. of link 1.		
DT9161	DT90161	Error flag [W/P link 1] (*Note)	Stores the error flag of link 1.		
DT9162	DT90162	Link unit no. [W/P link 2] (*Note)	Stores the unit No. of link 2.		
DT9163	DT90163	Error flag [W/P link 2] (*Note)	Stores the error flag of link 2.		
DT9164	DT90164	Link unit no. [W/P link 3] (*Note)	Stores the unit No. of link 3.		
DT9165	DT90165	Error flag [W/P link 3] (*Note)	Stores the error flag of link 3.		
-	DT90166	Link unit no. [W/P link 4] Available PLC: FP2SH, FP10SH	Stores the unit No. of link 4.	A	N/A
-	DT90167	Error flag [W/P link 4] Available PLC: FP2SH, FP10SH	Stores the error flag of link 4.		
-	DT90168	Link unit no. [W/P link 5] Available PLC: FP2SH, FP10SH	Stores the unit No. of link 5.		
-	DT90169	Error flag [W/P link 5] Available PLC: FP2SH, FP10SH	Stores the error flag of link 5.		

Ade	dress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
			Station number, where the send area		
DT9170	DT90170		address for the PC link is overlapped with		
			this station, is stored here.		
DT9171	DT90171		Test result in the optical transmission path test mode for MEWNET-P link system is		
DISITI	0130171		stored here.		
DT9172	DT90172		Counts how many times a token is lost.		
-			Counts how many times two or more tokens		
DT9173	DT90173		are detected.		
DT9174	DT90174		Counts how many times a signal is lost.		
D.T. (5700/75		Counts how many times a synchronous		
DT9175	DT90175		abnormality is detected.		
DT9176	DT90176		Send NACK		
DT9177	DT90177		Send NACK		
DT9178	DT90178		Send WACK		
DT9179	DT90179		Send WACK		
DT9180	DT90180		Send answer		
DT9181	DT90181		Send answer		
DT9182	DT90182	MEWNET-	Unidentified command		
DT9183	DT90183	WEWNEI- W/-P link	Counts how many times a parity error is		
		status	detected.	А	N/A
DT9184	DT90184	[W/P link 1]	End code receiving error		
DT9185	DT90185	(*Note)	Format error		
DT9186	DT90186		Not support error		
DT9187	DT90187		Self-diagnostic result		
DT0400	DT00400		Counts how many times loop change is		
DT9188	DT90188		detected.		
			Available PLC: FP3, FP10SH Counts home many times link error is		
DT9189	DT90189		detected.		
			Counts how many times main loop break is		
DT9190	DT90190		detected.		
210100			Available PLC: FP3, FP10SH		
			Counts how many times sub loop break is	1	
DT9191	DT90191		detected.		
			Available PLC: FP3, FP10SH		
DT0402	DT00402		Loop reconstruction condition	1	
DT9192	DT90192		Available PLC: FP3, FP10SH		
DT9193	DT90193		Loop operation mode		
019193	0130133		Available PLC: FP3, FP10SH		
DT9194	DT90194		Loop input status		
210107			Available PLC: FP3, FP10SH		

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Ado	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9195	DT90195	MEWNET-H link status/ link unit number (H link 1) (*Note1)	The link status for the MEWNET-H link is monitored as: Higher 8 bits Lower 8 bits DT9195/DT90195		
DT9196	DT90196	MEWNET-H link status/ link unit number (H link 2) (*Note1)	The link status for the MEWNET-H link is monitored as: Higher 8 bits Lower 8 bits DT9196/DT90196	A	N/A
DT9197	DT90197	MEWNET-H link status/ link unit number (H link 3) (*Note1)	The link status for the MEWNET-H link is monitored as: Higher 8 bits Lower 8 bits DT9197/DT90197 Link status Unit number of H link 3 of H link 3		
DT9198	DT90198	Not used	-	N/A	N/A
DT9199	DT90199	Not used	-		IN/A
DT9200	DT90200		Station number, where the send area address for the PC(PLC) link is overlapped with this station, is stored here.		
DT9201	DT90201		Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9202	DT90202		Counts how many times a token is lost.		
DT9203	DT90203	MEWNET- W/-P link	Counts how many times two or more tokens are detected.		
DT9204	DT90204	status	Counts how many times a signal is lost.	А	N/A
DT9205	DT90205	[W/P link 2] (*Note2)	Counts how many times a synchronous abnormality is detected.		
DT9206	DT90206		Send NACK		
DT9207	DT90207		Send NACK		
DT9208	DT90208		Send WACK		
DT9209	DT90209		Send WACK		
DT9210	DT90210		Send answer		
DT9211	DT90211		Send answer		
DT9212	DT90212	<u> </u>	Unidentified command		

Note1) For FP10SH/FP3, using H mode

For FP2/FP2SH, using W2 mode

Add FP3	Iress FP2/ FP2SH	Name	Descriptions	Read- ing	Writ- ing
	FP10SH				
DT9213	DT90213		Counts how many times a parity error is detected.		
DT9214	DT90214		End code receiving error		
DT9215	DT90215		Format error		
DT9216	DT90216		Not support error		
DT9217	DT90217		Self-diagnostic result		
DT9218	DT90218		Counts how many times loop change is detected. Available PLC: FP3, FP10SH		
DT9219	DT90219	MEWNET- W/-P link	Counts home many times link error is detected.		
DT9220	DT90220	status [W/P link 2] (*Note)	Counts how many times main loop break is detected. Available PLC: FP3, FP10SH	A	N/A
DT9221	DT90221		Counts how many times sub loop break is detected. Available PLC: FP3, FP10SH		
DT9222	DT90222		Loop reconstruction condition Available PLC: FP3, FP10SH		
DT9223	DT90223		Loop operation mode Available PLC: FP3, FP10SH		
DT9224	DT90224		Loop input status Available PLC: FP3, FP10SH		
DT9225	DT90225	Not used	-		
DT9226	DT90226	Not used	-		
DT9227	DT90227	Not used	-		
DT9228	DT90228	Not used	-		
DT9229	DT90229	Not used	-		
DT9230	DT90230		Station number, where the send area address for the PC link is overlapped with this station, is stored here.		
DT9231	DT90231	MEWNET-	Test result in the optical transmission path test mode for MEWNET-P link system is stored here.		
DT9232	DT90232	W/-P link	Counts how many times a token is lost.	•	
DT9233	DT90233	status [W/P link 3] (*Note)	Counts how many times two or more tokens are detected.	A	N/A
DT9234	DT90234		Counts how many times a signal is lost.		
DT9235	DT90235		Counts how many times a synchronous abnormality is detected.		
DT9236	DT90236	1	Send NACK	1	
DT9237	DT90237	1	Send NACK	1	

	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
DT9238 DT9239	DT90238 DT90239		Send WACK Send WACK	-	
DT9240	DT90240		Send answer	-	
DT9241	DT90241		Send answer	-	
DT9242 DT9243	DT90242 DT90243		Unidentified command Counts how many times a parity error is detected.		
DT9244	DT90244		End code receiving error		
DT9245	DT90245		Format error		
DT9246	DT90246]	Not support error]	
DT9247	DT90247		Self-diagnostic result		
DT9248	DT90248	MEWNET- W/-P link status	Counts how many times loop change is detected. Available PLC: FP3, FP10SH	Α	N/A
DT9249	DT90249	[W/P link 3] (*Note)	Counts home many times link error is detected.		107
DT9250	DT90250		Counts how many times main loop break is detected. Available PLC: FP3, FP10SH		
DT9251	DT90251		Counts how many times sub loop break is detected. Available PLC: FP3, FP10SH		
DT9252	DT90252		Loop reconstruction condition Available PLC: FP3, FP10SH	-	
DT9253	DT90253		Loop operation mode Available PLC: FP3, FP10SH	-	
DT9254	DT90254		Loop input status Available PLC: FP3, FP10SH		
-	DT90255	Monitoring tool port station No. (Available PLC: FP2SH/ FP10SH)	Station number BCD (H1 to H32) set for tool port is stored here.	A	N/A
-	DT90256	Monitoring COM port station No. (Available PLC: FP2SH/ FP10SH)	Station number BCD (H1 to H32) set for tool port is stored here.	A	IN/A

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

	Iress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
-	DT90257	Operation error program No. (hold) (Available PLC: FP2SH/ FP10SH)	An Operation error program block number is stored (higher byte) here when an operation error is detected. Program block number - H1: In the first program block - H2: In the 2nd program block		
-	DT90258	Operation error program No. (non-hold) (Available PLC: FP2SH/ FP10SH)	The program block number for the latest operation error is stored here each time an operation error is detected. Program block number - H1: In the first program block - H2: In the 2nd program block		
-	DT90259	Break occurrence program number (Available PLC: FP2SH/ FP10SH)	The program block number where the BRK instruction occurred is stored here. Program block number - H1: In the first program block - H2: In the 2nd program block		
-	DT90260	Type of IC memory card (Available PLC: FP2SH/ FP10SH)	Type of IC memory card is monitored here as: - H5: Flash-EEPROM type IC memory card - H6: SRAM type IC memory card - H506: For FP10SH, flash- EEPROM/SRAM mixed type IC memory card - H6: No archival information is stored - H6: No data is written - Other than above: Erroneous condition (self-diagnostic error code E56)	A	N/A
-	DT90261	Capacity of IC memory card 1 (Available PLC: FP2SH/ FP10SH)	The capacity of IC memory card is stored in units of KB. If Flash-EEPROM/SRAM mixed type IC memory card is used, SRAM capacity is stored.		
-	DT90262	Capacity of IC memory card 2 (Available PLC: FP2SH/ FP10SH)	If Flash-EEPROM/SRAM mixed type IC memory card is used, flash-EEPROM capacity is stored in units of KB.		
-	DT90263	File register bank (current value) (Available PLC: FP2SH)	The current value of file register bank is stored here.		

FP2/FP2SH/FP10SH/FP3 (A: Available, N/A: Not available)

Address FP2/					
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
-	DT90264	File register bank (shelter number) (Available PLC: FP2SH)	The shelter number of the file register bank is stored here.		
-	DT90265	Free compile memory capacity (Available PLC: FP2SH/ FP10SH)	Free capacity of compile memory is stored here. If the program memory is 120K steps, the capacity of 1st program block is stored.	A	N/A
-	DT90266	Free compile memory capacity for program block 2 (Available PLC: FP2SH/ FP10SH)	If the program memory is 120K steps, free capacity of program block 2 compile memory is stored here.		
-	DT90267	Not used	-	N/A	N/A
-	DT90268	Index register bank (current value) (Available PLC: FP2SH/ FP10SH)	The current value of index register bank is stored here.	A	А
-	DT90269	Index register bank (shelter number) (Available PLC: FP2SH/ FP10SH)	The shelter number of index register bank is stored here.	~	~
-	DT90399	Not used	-	N/A	N/A
-	DT90400	Number of the error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The total of the error alarm relay which went on is stored here. (Max. 500) To reset all data in the error alarm buffer, use an RST instruction and DT90400. X1 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	А	N/A

Address FP2/					
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
-	DT90401	First error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The first error alarm relay number which went on is stored. The error has been reset by executing a RST instruction. Example 1: Using RST instruction \downarrow $Prove Prove $		
-	DT90402	Second error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90403	Third error alarm relay which went on (Available PLC: FP2SH/ FP10SH)		A	N/A
-	DT90404	Forth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.		
-	DT90405	Fifth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	X1 E12 (DF) Relay number (E12) to reset R		
-	DT90406	Sixth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90407	Seventh error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

	lress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
-	DT90408	Eighth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90409	Ninth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90410	Tenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90411	Eleventh error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only. Relay number (E12) to reset	A	N/A
-	DT90412	Twelfth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90413	Thirteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90414	Fourteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

	dress				
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
-	DT90415	Fifteenth alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90416	Sixteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90417	Seventeenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)	The error alarm relay number which went on is stored. To reset the specified error alarm relay, use an RST instruction only.	A	N/A
- DI	DT90418	Eighteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			
-	DT90419	Nineteenth error alarm relay which went on (Available PLC: FP2SH/ FP10SH)			

Ado	Iress	-			
FP3	FP2/ FP2SH FP10SH	Name	Descriptions	Read- ing	Writ- ing
-	DT90420	Time at which the first error alarm relay (DT90401) went on (for minute and second data) (Available PLC: FP2SH/ FP10SH)	The time (minute and second) data at which the first error alarm relay in DT90401 went on is stored.		
-	DT90421	Time at which the first error alarm relay (DT90401) went on (for day and hour data) (Available PLC: FP2SH/ FP10SH)	The time (day and hour) data at which the first error alarm relay in DT90401 went on is stored.	A	N/A
	DT90422	Time at which the first error alarm relay (DT90401) went on (for year and month data) (Available PLC: FP2SH/ FP10SH)	The time (year and month) data at which the first error alarm relay in DT90401 went on is stored.		

11.2 Table of Basic Instructions

Name	Boolean	Symbol	Description	Steps *3	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
Sequence b	basic instruct	tions								
Start	ST	X, Y, R, T, C, L, P, E	Begins a logic operation with a Form A (normally open) contact.	1 (2)	0	0	0	0	0	0
Start Not	ST/	X, Y, R, T, C, L, P, E	Begins a logic operation with a Form B (normally closed) contact.	1 (2)	0	0	0	0	0	0
Out	от	Y, R, L, E	Outputs the operated result to the specified output.	1 (2)	0	0	0	0	0	0
Not	1	/	Inverts the operated result up to this instruction.	1	0	0	0	0	0	0
AND	AN	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact serially.	1 (2)	0	0	0	0	0	0
AND Not	AN/	X, Y, R, T, C, L, P, E	Connects a Form B (normally closed) contact serially.	1 (2)	0	0	0	0	0	0
OR	OR	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact in parallel.	1 (2)	0	0	0	0	0	0
OR Not	OR/	X, Y, R, T, C, L, P, E	Connects a Form B (normally closed) contact in parallel.	1 (2)	0	0	0	0	0	0
Leading edge start	sт↑	X, Y, R, T, C, L, P, E	Begins a logic operation only for one scan when the leading edge of the trigger is detected.	2	×	0	∆ *2	∆ *2	0	0
Trailing edge start	st↓	X, Y, R, T, C, L, P, E	Begins a logic operation only for one scan when the trailing edge of the trigger is detected.	2	×	0	∆ *2	∆ *2	0	0
Leading edge AND	AN↑	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact serially only for one scan when the leading edge of the trigger is detected.	2	×	0	∆ *2	∆ *2	0	0
Trailing edge AND	an↓	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact serially only for one scan when the trailing edge of the trigger is detected.	2	×	0	∆ *2	∆ *2	0	0
Leading edge OR	OR↑	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact in parallel only for one scan when the leading edge of the trigger is detected.	2	×	0	∆ *2	∆ *2	0	0
Trailing edge OR	OR↓	X, Y, R, T, C, L, P, E	Connects a Form A (normally open) contact in parallel only for one scan when the trailing edge of the trigger is detected.	2	×	0	∆ *2	∆ *2	0	0
Leading edge out	от↑	_[↑]	Outputs the operated result to the specified output only for one scan when leading edge of the trigger is detected. (for pulse relay)	2	×	×	×	×	0	0
Trailing edge out	от↓	_[↓]	Outputs the operated result to the specified output only for one scan when trailing edge of the trigger is detected. (for pulse relay)	2	×	×	×	×	0	0
Alterna- tive out	ALT	Y, R, L, E	Inverts the output condition (on/off) each time the leading edge of the trigger is detected.	3	×	0	0	0	0	0
AND stack	ANS		Connects the multiple instruction blocks serially.	1	0	0	0	0	0	0
OR stack	ORS		Connects the multiple instruction blocks in parallel.	1	0	0	0	0	0	0

 \bigcirc : Available, \times : Not available, \triangle : Not available partially

*1) The type of the devices that can be specified depends on the models.

*2) This instruction is available for FP-X Ver. 2.0 or later, and FP Σ Ver. 3.10 or later.

*3) In the FP2/FP2SH/10SH, when using X1280, Y1280, R1120 (special internal relay included), L1280, T256, C256 or anything beyond for the ST, ST/, OT, AN, AN/, OR and OR/ instructions, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses. For the FPΣ and FP-X, the number of steps varies according to the relay number to be used.

Name	Boolean	Symbol	Description	Steps *5 *6	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
Push stack	PSHS	$\vdash \vdash \vdash \vdash \vdash$	Stores the operated result up to this instruction. *2	1	0	0	0	0	0	0
Read stack	RDS		Reads the operated result stored by the PSHS instruction. *2	1	0	0	0	0	0	0
Pop stack	POPS		Reads and clears the operated result stored by the PSHS instruction	1	0	0	0	0	0	0
Leading edge differential	DF	(DF)	Turns on the contact for only one scan when the leading edge of the trigger is detected.	1	0	0	0	0	0	0
Trailing edge differential	DF/	(DF/)	Turns on the contact for only one scan when the trailing edge of the trigger is detected.	1	0	0	0	0	0	0
Leading edge differential (initial execution type)	DFI	(DFI)	Turns on the contact for only one scan when the leading edge of the trigger is detected. The leading edge detection is possible on the first scan.	1	×	0	0	0	0	0
Set	SET	Y, R, L, E	Output is set to and held at on.	3	0	0	0	0	0	0
Reset	RST	Y, R, L, E	Output is set to and held at off.	3	0	0	0	0	0	0
Кеер	KP	Reset	Outputs at set trigger and holds until reset trigger turns on.	1 (2)	0	\odot	0	0	0	0
No operation	NOP	•	No operation.	1	0	0	0	0	0	0
Basic function ins	tructions									
On-delay timer	TML		After set value "n" x 0.001 seconds, timer contact "a" is set to on.	3 (4)	0	0	0	0	0	0 *3
	TMR	TMe, n	After set value "n" x 0.01 seconds, timer contact "a" is set to on.	3 (4)	0	0	0	0	0	0 *3
	ТМХ		After set value "n" x 0.1 seconds, timer contact "a" is set to on.	3 (4)	0	0	0	0	0	○ *3
	ТМҮ		After set value "n" x 1 second, timer contact "a" is set to on.	4 (5)	0	0	0	0	0	○ *3
Auxiliary timer (16-bit)	F137 (STMR)	YR.LE. H HE137 STMR.S.DHC]-	After set value "S" x 0.01 seconds, the specified output and R900D are set to on.	5	0	0	0	0	0	0
Auxiliary timer (32-bit)	F183 (DSTM)	YRLE. H HEIB3DSTM.S.DHC]	After set value "S" x 0.01 seconds, the specified output and R900D are set to on.	7	0	0	0	0	0	0
Time constant processing	F182	[F182 FILTR S1, S2, S3, D]	Executes the filter processing for the specified input.	9	×	0	0	0	\times	×
Counter	СТ	Count Reset n	Decrements from the preset value "n"	3 (4)	0	0	0	0	0	○ *3

 \bigcirc : Available, \times : Not available, \triangle : Not available partially

*1) The type of the devices that can be specified depends on the models.

*2) The allowable number of using the PSHS and RDS instruction depends on the models.

*3) For FP2SH, FP10SH and FP-X Ver2.0 or later, any device can be set for the setting value of counter or timer instruction.

*4) This instruction is available for FP-X Ver. 2.0 or later.

*5) In the FP2/FP2SH/FP10SH, when using Y1280, R1120 (special internal relay included), L1280 or anything beyond for the KP instruction, the number of steps is shown in parentheses. Also, in the FP2/FP2SH/FP10SH, when a relay number has an index modifier, the number of steps is shown in parentheses.

*6) In the FP2/FP2SH/FP10SH, when timer 256 or higher, or counter 255 or lower, is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when a timer number or counter number has an index modifier, the number of steps is the number in parentheses. For the FPΣ and FP-X, the number of steps varies according to the specified timer number or counter number.

Name	Boolean	Symbol	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
					Ľ					FP2
UP/DOWN counter	F118 (UDC)	Count Reset D	Increments or decrements from the preset value "S" based on up/down input.	5	0	0	0	0	0	0
Shift register	SR	Data SR WR n - S	Shifts one bit of 16-bit [word internal relay (WR)] data to the left.	1 (2) *1	0	0	0	0	0	0
Left/right shift register	F119 (LRSR)	UR Data J Diffic	Shifts one bit of 16-bit data range specified by "D1" and "D2" to the left or to the right.	5	0	0	0	0	0	0
Control instr			-		-					-
Master control relay	MC	(MC n)- Master control area	Starts the master control program.	2	0	0	0	0	0	0
Master control relay end	MCE	(MQE n)-	Ends the master control program.	2	0	0	0	0	0	0
Jump	JP	(JP n)	The program jumps to the label instruction and continues from there.	2 (3) *2	0	0	0	0	0	0
Label	LBL			1						
Auxiliary jump	F19 (SJP)		The program jumps to the label instruction specified by "S" and continues from there.	3 1	×	×	×	×	0	0
Label Loop	LBL	(LBL n)-	The program jumps to the label instruction and continues from there (the number of jumps is set in "S").	4 (5) *3	0	0	0	0	0	0
Label	LBL			Ū	_				_	
Break	BRK	H H(BRK)	Stops program execution when the predetermined trigger turns on in the TEST/RUN mode only.	1	×	×	×	×	0	0

 \bigcirc : Available, \times : Not available, \triangle : Not available partially

*1) In the FP2/FP2SH/FP10SH, when internal relay WR240 or higher is used, the number of steps is the number in parentheses. Also, in the FP2/FP2SH/FP10SH, when the specified internal relay number (word address) has an index modifier, the number of steps is the number in parentheses.

*2) In the FP2/FP2SH/FP10SH, when the number "n" in a jump instruction has an index modifier, the number of steps isthenumber in parentheses.

*3) In the FP2/FP2SH/FP10SH, when the number "n" in a loop instruction has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
End	ED	(ED)-	The operation of program is ended. Indicates the end of a main program.	1	0	0	0	0	0	0
Conditional end	CNDE		The operation of program is ended when the trigger turns on.	1	0	0	0	0	0	0
Eject	EJECT	EJECT)-	Adds page break for use when printing.	1	×	0	0	0	0	0
Step ladder i	nstructions									
Start step	SSTP	(SSTP n)-	The start of program "n" for process control	3	0	0	0	0	0	0
Next step	NSTL	(NST∟n)-	Starts the specified process "n" and clears the process currently started. (Scan execution type)	3	0	0	0	0	0	0
	NSTP	NSTP n)-	Starts the specified process "n" and clears the process currently started. (Pulse execution type)	3	0	0	0	0	0	0
Clear step	CSTP	(CSTP n)-	Resets the specified process "n".	3	0	0	0	0	0	0
Clear multi- ple steps	SCLR		Resets multiple processes specified by "n1" and "n2".	5	∆ *1	0	0	0	0	0
Step end	STPE	(STPE)-	End of step ladder area	1	0	0	0	0	0	0
Subroutine in			r	1						
Subroutine call	CALL	(GALL n)	When the trigger is on: Executes the subroutine. When the trigger is off: Not execute the subroutine. The output in the subroutine is maintained.	2 (3) *2	0	0	0	0	0	0
Output off type subroutine call	FCAL	FCAL n)-	When the trigger is on: Executes the subroutine. When the trigger is off: Not execute the subroutine. But, the output in the subroutine is cleared.	4 (5) *2	×	Х	×	Х	×	0
Subroutine entry	SUB	(SUB n)	Indicates the start of the subroutine program "n".	1	0	0	0	0	0	0
Subroutine return	RET	(RET)	Ends the subroutine program.	1	0	0	0	0	0	0
Interrupt inst	ructions									
Interrupt	INT	(INT n)-	Indicates the start of the interrupt program "n".	1	0	0	0	0	0	0
Interrupt return	IRET	(IRET)	Ends the interrupt program.	1	0	0	0	0	0	0
Interrupt control	ICTL		Select interrupt enable/disable or clear in "S1" and "S2" and execute.	5	0	0	0	0	0	0

*1) Available for FP-e only.

*2) In the FP2/FP2SH/FP10SH, when the number "n" of a subroutine program has an index modifier, the number of steps is the number in parentheses.

Name	Boolean	Symbol	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
Special setting		3								
Communica- tion condi- tions setting	SYS1		Change the communication conditions for the COM port or tool port based on the contents specified by the character constant.		×	0	○ *1	0 *1	×	×
Password setting			Change the password specified by the PLC based on the contents specified by the character constant.		×	0	○ *2	0	×	×
Interrupt setting			Set the interrupt input based on the contents specified by the character constant.		×	0	0	0	×	×
PLC link time setting		H HOF-[SYSI, M]	Set the system setting time when a PLC link is used, based on the contents specified by the character constant.	13	×	0	0	0	×	×
MEWTOCOL- COM response control			Change the communication conditions of the COM. port or tool port for MEWTOCOL-COM based on the contents specified by the character constant.		×	0	0	0	×	×
High-speed counter operation mode changing			Change the operation mode of the high- speed counter, based on the contents specified by the character constant.		×	0	○ *3	○ *3	×	×
System registers "No. 40 to No. 47" changing	SYS2	H H[\$Y\$2, S, D1, D2]-	Change the setting value of the system register for the PLC link function.	7	×	0	0	0	×	×

*1) With FP-X Ver2.0 or later, and FP Σ Ver 3.10 or later, the baud rate can be selected from 300, 600 or 1200 bps.

*2) With FP Σ 32k type, the 8-digit password can be selected.

*3) With FP Σ 32k type and FP-X Ver1.10 or later, it can be used.

Name	Boolean	Symbol	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
Data comp	are instruct	ions								
16-bit	ST=	_ = \$1, \$2 _	Begins a logic operation by comparing two 16-	5	0	0	0	0	0	0
data	•••	Í Í	bit data in the comparative condition "S1=S2".	Э	0	0	0	0	0	0
	ST<>	< > \$1, \$2 ¬	Begins a logic operation by comparing two 16-							
compare			bit data in the comparative condition "S1 <s2"< td=""><td>5</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></s2"<>	5	0	0	0	0	0	0
(Start)			or "S1>S2".							
	ST>	⊥ ^{> S1, S2}	Begins a logic operation by comparing two 16-	5	0	0	0	0	0	0
		1	bit data in the comparative condition "S1>S2".	-						
	ST>=	->= \$1, \$2 -	Begins a logic operation by comparing two 16-	_	~	_	_	_	_	_
		<u> </u>	bit data in the comparative condition "S1>S2" or "S1=S2".	5	0	0	0	0	0	0
		_ < \$1, \$2 _								
	ST<		Begins a logic operation by comparing two 16- bit data in the comparative condition "S1 <s2".< td=""><td>5</td><td>$^{\circ}$</td><td>0</td><td>0</td><td>0</td><td>$^{\circ}$</td><td>0</td></s2".<>	5	$^{\circ}$	0	0	0	$^{\circ}$	0
	07	1	Begins a logic operation by comparing two 16-							
	ST<=	< = \$1, \$2	bit data in the comparative condition "S1 <s2"< td=""><td>5</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></s2"<>	5	0	0	0	0	0	0
			or "S1=S2".	Ŭ	0	<u> </u>	0	0	0	Ŭ
16-bit	AN=		Connects a Form A (normally open) contact							
		□ = S1, S2 □	serially by comparing two 16-bit data in the	5	0	0	0	0	0	0
data			comparative condition "S1=S2".							
compare	AN<>		Connects a Form A (normally open) contact							
(AND)		< > S1, S2	serially by comparing two 16-bit data in the	5	$^{\circ}$	\odot	0	0	\circ	0
			comparative condition "S1 <s2" "s1="" or="">S2".</s2">							
	AN>		Connects a Form A (normally open) contact							
		> \$1, \$2	serially by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1>S2".							
	AN>=	> = \$1, \$2 -	Connects a Form A (normally open) contact	_	~	0	~	~	~	~
			serially by comparing two 16-bit data in the comparative condition "S1>S2" or "S1=S2".	5	0	0	0	0	0	0
			Connects a Form A (normally open) contact							
	AN<	⊂ ^{< S1, S2} ¬	serially by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1 <s2".< td=""><td>Ŭ</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></s2".<>	Ŭ	0	0	0	0	0	0
	AN<=		Connects a Form A (normally open) contact							
		_ <= S1, S2 _	serially by comparing two 16-bit data in the	5	0	0	0	0	0	0
		<u></u>	comparative condition "S1 <s2" "s1='S2".</td' or=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></s2">							
16-bit	OR=		Connects a Form A (normally open) contact in							
data	-	_ = \$1,\$2	parallel by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1=S2".							
compare	OR<>		Connects a Form A (normally open) contact in							
(OR)		< ≻ \$1, \$2	parallel by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1 <s2" "s1="" or="">S2".</s2">							
	OR>	\$ 61 62	Connects a Form A (normally open) contact in	_	0	0	0	0	0	~
		> S1, S2	parallel by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1>S2". Connects a Form A (normally open) contact in							
	OR>=	_ > = \$1, \$2 _	parallel by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1>S2" or "S1=S2".	5						
	OP 4		Connects a Form A (normally open) contact in							
	OR<	_ < \$1, \$2 _	parallel by comparing two 16-bit data in the	5	0	0	0	0	0	0
			comparative condition "S1 <s2".< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></s2".<>	-						
	OR<=		Connects a Form A (normally open) contact in		1					
		_ <= S1, S2 _	parallel by comparing two 16-bit data in the	5	0	0	0	0	0	0
		<u> </u>	comparative condition "S1 <s2" "s1='S2".</td' or=""><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></s2">		1					

Name	Boolean	Symbol	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
32-bit data	STD=	D= \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
compare (Start)	STD<>	L D<> \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	0	0	0	0	0	0
	STD>	L⊂ D> S1. S2 J_	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	0	0	0	0	0	0
	STD>=	D>= \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
	STD<	D< \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	0	0	0	0	0	0
	STD<=	D<= \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
32-bit data	AND=	D= S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
compare (AND)	AND<>	^{D< → S1, S2}]	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	0	0	0	0	0	0
	AND>	^{D> S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	0	0	0	0	0	0
	AND>=	D> = S1, S2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
	AND<	^{D< S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	0	0	0	0	0	0
	AND<=	^{D< = S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
32-bit data	ORD=	^{D= S1, S2}	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
compare (OR)	ORD<>	^{D<> \$1, \$2}	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	0	0	0	0	0	0
	ORD>	D> \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	0	0	0	0	0	0
	ORD>=	D>= \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0
	ORD<	D< \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	0	0	0	0	0	0
	ORD<=	D< = \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	0	0	0	0	0	0

Name	Boolean	Symbol	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
Floating point	STF=	F= S1, S2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	×
type real number	STF<>	F< > S1, S2 ⊥	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	х
data compare	STF>	F> \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
(Start)	STF>=	F> = S1, S2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
	STF<	F< \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
	STF<=	F< = \$1, \$2	Begins a logic operation by comparing two 32- bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
Floating point	ANF=	^{F= \$1, \$2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
type real number data	ANF<>	^{F<> \$1, \$2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	×
compare (AND)	ANF>	F> \$1, \$2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
	ANF>=	F> = \$1, \$2	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
	ANF<	^{F< S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	×
	ANF<=	^{F< = S1, S2}	Connects a Form A (normally open) contact serially by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	х	0	∆ *1	∆ *1	×	×
Floating point	ORF=	F= \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	×
type real number data	ORF<>	F<> \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)>(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
compare (OR)	ORF>	F> \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	×
	ORF>=	F> = S1, S2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)>(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
	ORF<	F< \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)".	9	×	0	∆ *1	∆ *1	×	×
	ORF<=	F< = \$1, \$2	Connects a Form A (normally open) contact in parallel by comparing two 32-bit data in the comparative condition "(S1+1, S1)<(S2+1, S2)" or "(S1+1, S1)=(S2+1, S2)".	9	×	0	∆ *1	∆ *1	Х	×

 \bigcirc : Available, \times : Not available, \bigtriangleup : Not available partially *1) This instruction is available for FP-X V1.10 or later and FP Σ 32k type

11.3 Table of High-level Instructions

The high-level instructions are expressed by the prefixes "F" or "P" with numbers. For most of the high-level instructions, "F" and "P" types are available. The differences between the two types are explained as follows:

- Instructions with the prefix "F" are executed in every scan while its trigger is in the on.

- Instructions with the prefix "P" are executed only when the leading edge of its trigger is detected.

For the FP0/FP0R/FP Σ /FP-X, the P type high-level instructions are not available.

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	ansfer instruction						1				
F0 P0	16-bit data move	MV PMV	S, D	(S)→(D)	5	\odot	0	0	0	0	0
F1	32-bit data	DMV	S, D	(S+1, S)→(D+1, D)	_	0	0	0	0	0	~
P1	move	PDMV	- ,		7	0	0	0	0	0	0
F2 P2	16-bit data invert and move	MV PMV/	S, D	(S)→(D)	5	0	0	0	0	0	0
F3 P3	32-bit data invert and move	DMV/ PDMV/	S, D	(S+1, S)→(D+1, D)	7	0	0	0	0	0	0
F4 P4	Reading of head word No. of the specified slot	GETS PGETS	S, D	The head word No. of the specified slot is read.	5	×	×	×	×	∆ *1	∆ *1
F5 P5	Bit data move	ВТМ РВТМ	S, n, D	The specified one bit in "S" is transferred to the specified one bit in "D". The bit is specified by "n".	7	0	0	0	0	0	0
F6 P6	Hexadecimal digit (4-bit) data move	DGT PDGT	S, n, d	The specified one digit in "S" is transferred to the specified one digit in "D". The digit is specified by "n".	7	0	0	0	0	0	0
F7	Two 16-bit	MV2	S1,	(S1)→(D),	7	Х	0	0	0	0	0
P7 F8	data move Two 32-bit	PMV2 DMV2	S2, D S1.	(S2)→(D+1) (S1+1, S1)→(D+1, D),							
P8	data move	PDMV2	S2, D	(S2+1, S2)→(D+3, D+2)	11	×	0	0	0	0	0
F10 P10	Block move	BKMV PBKMV	S1, S2, D	The data between "S1" and "S2" is transferred to the area starting at "D".	7	0	0	0	0	0	0
F11 P11	Block copy	COPY PCOPY	S, D1, D2	The data of "S" is transferred to the all area between "D1" and "D2".	7	0	0	0	0	0	0
F12	Data read from EEP- ROM	ICRD	S1, S2, D	The data stored in the expansion memory of the EEP-ROM specified by "S1" and "S2" are transferred to the area starting at "D".	11	○ *2	×	×	×	×	×
P13	Data write to EEP-ROM	PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the EEP-ROM starting at "D".	11	○ *2	×	×	\times	Х	\times
F12	Data read from F-ROM	ICRD	S1, S2, D	The data stored in the expansion memory of the F-ROM specified by "S1" and "S2" are transferred to the area starting at "D".	11	Х	0	0	0	Х	×
P13	Data write to F-ROM	PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the F-ROM starting at "D".	11	Х	0	0	0	×	×
F12 P12	Data read from IC card	ICRD PICRD	S1, S2, D	The data stored in the expansion memory of the IC card specified by "S1" and "S2" are transferred to the area starting at "D".	11	×	×	×	×	Х	0
F13 P13	Data write to IC card	ICWT PICWT	S1, S2, D	The data specified by "S1" and "S2" are transferred to the IC card expansion memory area starting at "D".	11	×	×	×	×	×	0
F14 P14	Program read from IC memory card	PGRD PPGRD	S	The program specified using "S" is transferred into the CPU from IC memory card and executes it.	3	Х	×	×	Х	×	0

 $\overline{\mathbb{O}}$: Available, \times : Not available, $\overline{\mathbb{O}}$: Not available partially

*1) This instruction is available for FP2/FP2SH Ver. 1.5 or later.FP10SH cannot be used

*2) This instruction is available for FP0 Ver. 2.0 or later and FP-e.

Num- ber	Name	Boo-lean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	K-43	FP2	FP2SH/FP10SH
F15 P15	16-bit data exchange	XCH PXCH	D1, D2	(D1)→(D2), (D2)→(D1)	5	0	0	0	0	0	0
F16	32-bit data	DXCH	D1, D2	(D1+1, D1)→(D2+1, D2)	5	0	0	0	0	0	0
P16 F17	exchange Higher/lower	PDXCH SWAP	D	$(D2+1, D2) \rightarrow (D1+1, D1)$ The higher byte and lower byte of "D"							
P17	byte in 16-bit data exchange	PSWAP		are exchanged.	3	0	0	0	0	0	0
F18 P18	16-bit data block exchange	ВХСН РВХСН	D1, D2, D3	Exchange the data between "D1" and "D2" with the data specified by "D3".	7	×	0	0	0	0	0
Contro	l instruction					I					
F19	Auxiliary jump	SJP	S	The program jumps to the label instruction specified by "S" and continues from there.	3	×	×	×	×	0	0
Binary F20	arithmetic instruc 16-bit data	tions	0.0	(D)+(S)→(D)		1	1	1			
P20	addition	+ P+	S, D		5	0	0	0	0	0	0
F21 P21	32-bit data addition	D+ PD+	S, D	(D+1, D)+(S+1, S)→(D+1, D)	7	0	0	0	0	0	0
F22 P22	16-bit data addition	+ P+	S1, S2, D	(S1)+(S2)→(D)	7	0	0	0	0	$^{\circ}$	0
F23	32-bit data	D+	S1,	(S1+1, S1)+(S2+1, S2)→(D+1, D)	11	0	0	0	0	0	0
P23 F25	addition 16-bit data	PD+ -	S2, D S, D	(D)-(S)→(D)		-	_	_	-	-	-
P25	subtraction	P-			5	0	0	0	0	0	0
F26 P26	32-bit data subtraction	D- PD-	S, D	(D+1, D)-(S+1, S)→(D+1, D)	7	0	0	0	0	0	0
F27 P27	16-bit data subtraction	- P-	S1, S2, D	(S1)-(S2)→(D)	7	0	0	0	0	$^{\circ}$	0
F28 P28	32-bit data subtraction	D- PD-	S1, S2, D	(S1+1, S1)-(S2+1, S2)→(D+1, D)	11	0	0	0	0	0	0
F30 P30	16-bit data multiplication	* P*	S1, S2, D	(S1)X(S2)→(D+1, D)	7	0	0	0	0	0	0
F31 P31	32-bit data multiplication	D* PD*	S1, S2, D	(S1+1, S1)X(S2+1, S2)→(D+3, D+2, D+1, D)	11	0	0	0	0	0	0
F32 P32	16-bit data division	% P%	S1, S2, D	(S1)÷(S2)→quotient (D) remainder (DT9015)	7	0	0	0	0	0	0
F33 P33	32-bit data division	D% PD%	S1, S2, D	(S1+1, S1)÷(S2+1, S2)→quotient (D+1, D) remainder (DT9016, DT9015)	11	0	0	0	0	0	0
F34 P34	16-bit data multiplication (result in 16 bits)	*W P*W	S1, S2, D	(S1)X(S2)→(D)	7	×	0	0	0	0	0
F35 P35	16-bit data increment	+1 P+1	D	(D)+1→(D)	3	0	0	0	0	0	0
F36 P36	32-bit data increment	D+1 PD+1	D	(D+1, D)+1→(D+1, D)	3	0	0	0	0	0	0
F37 P37	16-bit data decrement	-1 P-1	D	(D)-1→(D)	3	0	0	0	0	0	0
F38 P38	32-bit data decrement	D-1 PD-1	D	(D+1, D)-1→(D+1, D)	3	0	0	0	0	0	0
F39 P39	32-bit data multiplication (result in 32 bits) able, X : Not avail	D*D PD*D	S1, S2, D	(S1+1, S1)x(S2+1, S2)→(D+1, D)	11	×	0	0	0	0	0

Num- ber	Name	Boo- lean	Operand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
BCD ar	ithmetic instruction	S									
F40 P40	4-digit BCD data addition	B+ PB+	S, D	(D)+(S)→(D)	5	0	0	0	0	0	0
F41 P41	8-digit BCD data addition	DB+ PDB+	S, D	(D+1, D)+(S+1, S)→(D+1, D)	7	0	0	0	0	0	0
F42 P42	4-digit BCD data addition	B+ PB+	S1, S2, D	(S1)+(S2)→(D)	7	0	0	0	0	0	0
F43 P43	8-digit BCD data addition	DB+ PDB+	S1, S2, D	(S1+1, S1)+(S2+1, S2)→(D+1, D)	11	0	0	0	0	0	0
F45 P45	4-digit BCD data subtraction	В- РВ-	S, D	(D)-(S)→(D)	5	0	0	0	0	0	0
F46 P46	8-digit BCD data subtraction	DB- PDB-	S, D	(D+1, D)-(S+1, S)→(D+1, D)	7	0	0	0	0	0	0
F47 P47	4-digit BCD data subtraction	В- РВ-	S1, S2, D	(S1)-(S2)→(D)	7	0	0	0	0	0	0
F48 P48	8-digit BCD data subtraction	DB- PDB-	S1, S2, D	(S1+1, S1)-(S2+1, S2)→(D+1, D)	11	0	0	0	0	0	0
F50 P50	4-digit BCD data multiplication	B* PB*	S1, S2, D	(S1)X(S2)→(D+1, D)	7	0	0	0	0	0	0
F51 P51	8-digit BCD data multiplication	DB* PDB*	S1, S2, D	(S1+1, S1)X(S2+1, S2)→(D+3, D+2, D+1, D)	11	0	0	0	0	0	0
F52 P52	4-digit BCD data division	B% PB%	S1, S2, D	(S1)÷(S2)→quotient (D) remainder (DT9015)	7	0	0	0	0	0	0
F53 P53	8-digit BCD data division	DB% PDB%	S1, S2, D	(S1+1, S1)÷(S2+1, S2)→quotient (D+1, D) remainder (DT9016, DT9015)	11	0	0	0	0	0	0
F55 P55	4-digit BCD data increment	B+1 PB+1	D	(D)+1→(D)	3	0	0	0	0	0	0
F56 P56	8-digit BCD data increment	DB+1 PDB+1	D	(D+1, D)+1→(D+1, D)	3	0	0	0	0	0	0
F57 P57	4-digit BCD data decrement	B-1 PB-1	D	(D)-1→(D)	3	0	0	0	0	0	0
F58 P58	8-digit BCD data decrement	DB-1 PDB-1	D	(D+1, D)-1→(D+1, D)	3	0	0	0	0	0	0
	ompare instructions					-				1	
F60 P60	16-bit data compare	CMP PCMP	S1, S2	$(S1)>(S2)\rightarrow R900A$: on $(S1)=(S2)\rightarrow R900B$: on $(S1)<(S2)\rightarrow R900C$: on	5	0	0	0	0	0	0
F61 P61	32-bit data compare	DCMP PDCMP	S1, S2	$(S1+1, S1)>(S2+1, S2)\rightarrow R900A: on$ $(S1+1, S1)=(S2+1, S2)\rightarrow R900B: on$ $(S1+1, S1)=(S2+1, S2)\rightarrow R900B: on$ $(S1+1, S1)<(S2+1, S2)\rightarrow R900C: on$	9	0	0	0	0	0	0
F62 P62	16-bit data band compare	WIN PWIN	S1, S2, S3	(S1)>(S3)→R900A: on (S2)< or=(S1)< or=(S3)→R900B: on (S1)<(S2)→R900C: on	7	0	0	0	0	0	0

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F63 P63	32-bit data band compare	dwin Pdwin	S1, S2, S3	$(S1+1, S1)>(S3+1, S3)\rightarrow R900A:$ on $(S2+1, S2)<$ or= $(S1+1, S1)<$ or= $(S3+1, S3)\rightarrow R900B:$ on $(S1+1, S1)<(S2+1, S2)\rightarrow R900C:$ on	13	0	0	0	0	0	0
F64 P64	Block data compare	BCMP PBCMP	S1, S2, S3	Compares the two blocks beginning with "S2" and "S3" to see if they are equal.	7	0	0	0	0	0	0
Logic o	peration instru	ctions									
F65 P65	16-bit data AND	WAN PWAN	S1, S2, D	(S1) AND (S2)→(D)	7	0	0	0	0	0	0
F66 P66	16-bit data OR	WOR PWOR	S1, S2, D	(S1) OR (S2)→(D)	7	0	0	0	0	0	0
F67 P67	16-bit data exclusive OR	XOR PXOR	S1, S2, D	$(S1) \text{ AND } (S2) OR \overline{(S1)} \text{ AND } (S2) \rightarrow (D)$	7	0	0	0	0	0	0
F68 P68	16-bit data exclusive NOR	XNR PXNR	S1, S2, D	{(S1) AND (S2)} OR {(S1) AND (S2)}→(D)	7	0	0	0	0	0	0
F69 P69	16-bit data unite	WUNI PWUNI	S1, S2, S3, D	([S1] AND [S3]) OR ([S2] AND $\overline{[S3]}$) \rightarrow (D) When (S3) is H0, (S2) \rightarrow (D) When (S3) is HFFFF, (S1) \rightarrow (D)	9	×	0	0	0	0	0
Data co	onversion instru	ictions									
F70 P70	Block check code calculation	BCC PBCC	S1, S2, S3, D	Creates the code for checking the data specified by "S2" and "S3" and stores it in "D". The calculation method is specified by "S1".	9	0	0	0	0	0	0
F71 P71	Hexadecima I data → ASCII code	HEXA PHEXA	S1, S2, D	Converts the hexadecimal data specified by "S1" and "S2" to ASCII code and stores it in "D". Example: HABCD \rightarrow H <u>42</u> <u>41</u> <u>44</u> <u>43</u> B A D C	7	0	0	0	0	0	0
F72 P72	ASCII code → Hexadeci- mal data	AHEX PAHEX	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to hexadecimal data and stores it in "D". Example: H <u>44 43 42 41</u> \rightarrow HCDAB D C B A	7	0	0	0	0	0	0
F73 P73	4-digit BCD data → ASCII code	BCDA PBCDA	S1, S2, D	Converts the four digits of BCD data specified by "S1" and "S2" to ASCII code and stores it in "D". Example: H1234 \rightarrow H <u>32</u> <u>31</u> <u>34</u> <u>33</u> 2 1 4 3	7	0	0	0	0	0	0
F74 P74	ASCII code → 4-digit BCD data	ABCD PABCD	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to four digits of BCD data and stores it in "D". Example: H $\underline{34} \underline{33} \underline{32} \underline{31} \rightarrow H3412$ $4 \ 3 \ 2 \ 1$	9	0	0	0	0	0	0
F75 P75	16-bit binary data → ASCII code	BINA PBINA	S1, S2, D	Converts the 16 bits of binary data specified by "S1" to ASCII code and stores it in "D" (area of "S2" bytes). Example: K-100 \rightarrow H $\underline{30} \ \underline{30} \ \underline{31} \ \underline{2D} \ \underline{20} \ \underline{20} \ \underline{0} \ 0 \ 1 \ -$	7	0	0	0	0	0	0

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F76 P76	ASCII code → 16-bit binary data	ABIN PABIN	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 16 bits of binary data and stores it in "D". Example: H $\underline{30} \ \underline{30} \ \underline{31} \ \underline{2D} \ \underline{20} \ \underline{20} \rightarrow K-100$ 0 0 1 -	7	0	0	0	0	0	0
F77 P77	32-bit binary data → ASCII code	DBIA PDBIA	S1, S2, D	Converts the 32 bits of binary data (S1+1, S1) to ASCII code and stores it in D (area of "S2" bytes).	11	0	0	0	0	0	0
F78 P78	ASCII code → 32-bit binary data	DABI PDABI	S1, S2, D	Converts the ASCII code specified by "S1" and "S2" to 32 bits of binary data and stores it in (D+1, D).	11	0	0	0	0	0	0
F80 P80	16-bit binary data → 4-digit BCD data	BCD PBCD	S, D	Converts the 16 bits of binary data specified by "S" to four digits of BCD data and stores it in "D". Example: K100 \rightarrow H100	5	0	0	0	0	0	0
F81 P81	4-digit BCD data → 16-bit binary data	BIN PBIN	S, D	Converts the four digits of BCD data specified by "S" to 16 bits of binary data and stores it in "D". Example: H100 \rightarrow K100	5	0	0	0	0	0	0
F82 P82	32-bit binary data → 8-digit BCD data	DBCD PDBCD	S, D	Converts the 32 bits of binary data specified by (S+1, S) to eight digits of BCD data and stores it in (D+1, D).	7	0	0	0	0	0	0
F83 P83	8-digit BCD data → 32-bit binary data	DBIN PDBIN	S, D	Converts the eight digits of BCD data specified by (S+1, S) to 32 bits of binary data and stores it in (D+1, D).	7	0	0	0	0	0	0
F84 P84	16-bit data invert (com- plement of 1)	INV PINV	D	Inverts each bit of data of "D".	3	0	0	0	0	0	0
F85 P85	16-bit data complement of 2	NEG PNEG	D	Inverts each bit of data of "D" and adds 1 (inverts the sign).	3	0	0	0	0	0	0
F86 P86	32-bit data complement of 2	DNEG PDNEG	D	Inverts each bit of data of (D+1, D) and adds 1 (inverts the sign).	3	0	0	0	0	0	0
F87 P87	16-bit data absolute	ABS PABS	D	Gives the absolute value of the data of "D".	3	0	0	0	0	0	0
F88 P88	32-bit data absolute	DABS PDABS	D	Gives the absolute value of the data of (D+1, D).	3	0	0	0	0	0	0
F89 P89	16-bit data sign extension	EXT PEXT	D	Extends the 16 bits of data in "D" to 32 bits in (D+1, D).	3	0	0	0	0	0	0
F90 P90	Decode	DECO PDECO	S, n, D	Decodes part of the data of "S" and stores it in "D". The part is specified by "n".	7	0	0	0	0	0	0
F91 P91	7-segment decode	SEGT PSEGT	S, D	Converts the data of "S" for use in a 7- segment display and stores it in (D+1, D).	5	0	0	0	0	0	0
F92 P92	Encode	ENCO PENCO	S, n, D	Encodes part of the data of "S" and stores it in "D". The part is specified by "n".	7	0	0	0	0	0	0
F93 P93	16-bit data combine	UNIT PUNIT	S, n, D	The least significant digit of each of the "n" words of data beginning at "S" are stored (united) in order in "D".	7	0	0	0	0	0	0

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	X-d3	FP2	FP2SH/FP10SH
F94 P94	16-bit data distribute	DIST PDIST	S, n, D	Each of the digits of the data of "S" are stored in (distributed to) the least significant digits of the areas beginning at "D".	7	0	0	0	0	0	0
F95 P95	Character→ ASCII code	ASC PASC	S, D	Twelve characters of the character constants of "S" are converted to ASCII code and stored in "D" to "D+5".	15	0	0	0	0	0	0
F96 P96	16-bit table data search	SRC PSRC	S1, S2, S3	The data of "S1" is searched for in the areas in the range "S2" to "S3" and the result is stored in DT9037 and DT9038	7	0	0	0	0	0	0
F97 P97	32-bit table data search	DSRC PDSRC	S1, S2, S3	The data of (S1+1, S1) is searched for in the 32-bit data designated by "S3", beginning from "S2", and the result if stored in DT90037 and DT90038.	11	×	0	0	0	0	0
	hift instructions										
F98 P98	Data table shift-out and compress	CMPR PCMPR	D1, D2, D3	Transfer "D2" to "D3". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	×	0	0	0	0	0
F99 P99	Data table shift-in and compress	CMPW PCMP W	S, D1, D2	Transfer "S" to "D1". Any parts of the data between "D1" and "D2" that are 0 are compressed, and shifted in order toward "D2".	7	×	0	0	0	0	0
F100 P100	Right shift of multiple bits (n bits) in a 16-bit data	SHR PSHR	D, n	Shifts the "n" bits of "D" to the right.	5	0	0	0	0	0	0
F101 P101	Left shift of multiple bits (n bits) in a 16- bit data	SHL PSHL	D, n	Shifts the "n" bits of "D" to the left.	5	0	0	0	0	0	0
F102 P102	Right shift of n bits in a 32-bit data	DSHR PDSHR	D, n	Shifts the "n" bits of the 32-bit data area specified by (D+1, D) to the right.	5	×	0	0	0	0	0
F103	Left shift of n bits in	DSHL	D, n	Shifts the "n" bits of the 32-bit data	5	×	0	0	0	0	0
P103 F105 P105	a 32-bit data Right shift of one hexadecimal digit (4-	PDSHL BSR PBSR	D	area specified by (D+1, D) to the left. Shifts the one digit of data of "D" to the right.	3	0	0	0	0	0	0
F106 P106	bit) Left shift of one hexadecimal digit (4-bit)	BSL PBSL	D	Shifts the one digit of data of "D" to the left.	3	0	0	0	0	0	0
F108	Right shift of	BITR	D1,	Shifts the "n" bits of data range by	7	×	0	0	0	0	0
P108	multiple bits (n bits)	PBITR	D2, n	"D1" and "D2" to the right.			_	-	_	_	
F109 P109	Left shift of multiple bits (n bits)	BITL PBITL	D1, D2, n	Shifts the "n" bits of data range by "D1" and "D2" to the left.	7	\times	0	0	0	0	0
F110 P110	Right shift of one word (16-bit)	WSHR PWSHR	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the right.	5	0	0	0	0	0	0
F111 P111	Left shift of one word (16-bit)	WSHL PWSHL	D1, D2	Shifts the one word of the areas by "D1" and "D2" to the left.	5	0	0	0	0	0	0
F112 P112	Right shift of one hexadecimal digit (4- bit)	WBSR PWBSR	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the right.	5	0	0	0	0	0	0
F113 P113	Left shift of one hexadecimal digit (4- bit)	WBSL PWBSL	D1, D2	Shifts the one digit of the areas by "D1" and "D2" to the left.	5	0	0	0	0	0	0

Num -ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
FIFO ir F115	structions	FIFT	~ D	The "a" words heringing from "D" are	1	1	1	1	1		
P115	FIFO buller deline	PFIFT	n, D	The "n" words beginning from "D" are defined in the buffer.	5	×	0	0	0	0	0
F116	Data read from	FIFR	S, D	The oldest data beginning from "S"							
P116	FIFO buffer	PFIFR		that was written to the buffer is read	5	\times	0	$^{\circ}$	0	0	0
				and stored in "D".							
F117	Data write into	FIFW	S, D	The data of "S" is written to the buffer	5	Х	0	0	0	0	0
P117 Basic f	FIFO buffer	PFIFW		starting from "D".							
F118	UP/DOWN counter	UDC	S, D	Counts up or down from the value							
			-, -	preset in "S" and stores the elapsed	5	0	0	0	0	0	0
				value in "D".							
F119	Left/right shift	LRSR	D1,	Shifts one bit to the left or right with	_	0	0	0	0	0	0
	register		D2	the area between "D1" and "D2" as the register.	5	0	0	0	0	0	0
Data ro	tate instructions	l									
F120	16-bit data right	ROR	D, n	Rotates the "n" bits in data of "D" to	5	0	0	0	0	0	0
P120	rotate	PROR		the right.	5	0	0	0	0	0	0
F121	16-bit data left	ROL	D, n	Rotates the "n" bits in data of "D" to	5	0	0	0	0	0	0
P121 F122	rotate 16-bit data right	PROL RCR	D, n	the left. Rotates the "n" bits in 17-bit area							
P122	rotate with carry	PRCR	D, 11	consisting of "D" plus the carry flag	5	0	0	0	0	0	0
	flag (R9009) data			(R9009) data to the right.	Ŭ	0	Ŭ	Ŭ	Ŭ		Ŭ
F123	16-bit data left	RCL	D, n	Rotates the "n" bits in 17-bit area							
P123	rotate with carry	PRCL		consisting of "D" plus the carry flag	5	0	0	0	0	0	0
F125	flag (R9009) data 32-bit data right	DROR	D, n	(R9009) data to the left. Rotates the number of bits specified							
P125	rotate	PDROR	D, 11	by "n" of the double words data (32			-	_	_	_	_
	, otato	1 Dittoit		bits) specified by (D+1, D) to the	5	×	0	0	0	0	0
				right.							
F126	32-bit data left	DROL	D, n	Rotates the number of bits specified	_		~	~	_	_	_
P126	rotate	PDROL		by "n" of the double words data (32 bits) specified by (D+1, D) to the left.	5	×	0	0	0	0	0
F127	32-bit data right	DRCR	D, n	Rotates the number of bits specified							
P127	rotate with carry	PDRCR	0, 11	by "n" of the double words data (32	_		~	~	~	~	_
	flag (R9009) data			bits) specified by (D+1, D) to the right	5	×	0	0	0	0	0
			_	together with carry flag (R9009) data.							
F128 P128	32-bit data left rotate with carry	DRCL PDRCL	D, n	Rotates the number of bits specified by "n" of the double words data (32							
F120	flag (R9009) data	FUNCE		bits) specified by (D+1, D) to the left	5	\times	0	0	0	0	0
				together with carry flag (R9009) data.							
	nipulation instruction										
F130	16-bit data bit set	BTS	D, n	Sets the value of bit position "n" of	5	0	0	0	0	0	0
P130 F131	16 bit data h ^{it}	PBTS		the data of "D" to 1.	-	_	<u> </u>	_	-	_	-
P131	16-bit data bit reset	BTR PBTR	D, n	Sets the value of bit position "n" of the data of "D" to 0.	5	0	0	$^{\circ}$	0	0	0
F132	16-bit data invert	BTI	D, n	Inverts the value of bit position "n" of	-	~	~	~	~	~	~
P132		PBTI		the data of "D".	5	0	0	0	0	0	0
F133 P133	16-bit data bit test	BTT PBTT	D, n	Tests the value of bit position "n" of the data of "D" and outputs the result to R900B.	5	0	0	0	0	0	0
F135 P135	Number of on (1) bits in 16-bit data	BCU PBCU	S, D	Stores the number of on bits in the data of "S" in "D".	5	0	0	0	0	0	0
F136	Number of on (1)	DBCU	S, D	Stores the number of on bits in the	7	0	0	0	0	0	0
P136	bits in 32-bit data	PDBCU		data of (S+1, S) in "D".	'	0	0)	0	0	0

Num -ber	Name	Boo- lean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
	unction instruct										
F137	Auxiliary	STMR	S, D	Turns on the specified output and	5	0	0	0	0	0	0
	timer (16-bit)			R900D after 0.01 s × set value.	Ŭ	· ·	· ·	-	0	0	Ŭ
	l instructions										
F138 P138	Hours, min- utes and sec- onds to seconds data	HMSS PHMSS	S, D	Converts the hour, minute and second data of (S+1, S) to seconds data, and the converted data is stored in (D+1, D).	5	∆ *1	0	0	0	0	0
F139	Seconds to	SHMS	S, D	Converts the seconds data of (S+1, S)							
P139	hours, minutes and seconds data	PSHMS		to hour, minute and second data, and the converted data is stored in (D+1, D).	5	∆ *1	0	0	0	0	0
F140 P140	Carry flag (R9009) set	STC PSTC	-	Turns on the carry flag (R9009).	1	0	0	0	0	0	0
F141	Carry flag	CLC	-	Turns off the carry flag (R9009).	1	0	0	0	0	0	0
P141 F142	(R9009) reset Watching	PCLC WDT	S	The time (allowable scan time for the							
P142	dog timer update	PWDT	-	system) of watching dog timer is changed to "S" \times 0.1 (ms) for that scan.	3	×	×	×	×	×	0
F143 P143	Partial I/O update	iorf Piorf	D1, D2	Updates the I/O from the number specified by "D1" to the number specified by "D2".	5	0	0	0	0	0	0
F144	Serial data communica- tion control	TRNS	S, n	The COM port received flag (R9038) is set to off to enable reception. Beginning at "S", "n" bytes of the data registers are sent from the COM port.	5	○ *2	х	×	×	0	0
F145 P145	Data send	SEND PSEND	S1, S2, D, N	Sends the data to another station in the network (MEWNET). (via link unit)	9	×	×	Х	Х	0	0
F146 P146	Data receive	RECV PRECV	S1, S2, N, D	Receives the data to another station in the network (MEWNET). (via link unit)	9	×	Х	×	×	0	0
F145 P145	Data send	SEND	S1, S2, D, N	Sends the data to the slave station as the MOD bus master. (via COM port)	9	×	0	∆ *3	0	×	×
F146 P146	Data receive	RECV	S1, S2, N, D	Receives the data from the slave station as the MOD bus master. (via COM port)	9	×	0	∆ *3	0	×	×
F145 P145	Data send	SEND	S1, S2, D, N	Sends the data to the slave station of the MOD bus master, type II.	9	×	0	∆ *4	∆ *4	×	×
F146 P146	Data receive	RECV	S1, S2, N, D	Receives the data from the slave station of the MOD bus master, type II.	9	×	0	∆ *4	∆ *4	×	×
F145 P145	Data send	SEND	S1, S2, D, N	Sends the data to the slave station as the MEWTOCOL master. (via COM port)	9	×	0	∆ *3	∆ *3	×	×
F146 P146	Data receive	RECV	S1, S2, N, D	Receives the data from the slave station as the MEWTOCOL master. (via COM port)	9	×	0	∆ *3	∆ *3	×	×
F147	Printout	PR	S, D	Converts the ASCII code data in the area starting with "S" for printing, and outputs it to the word external output relay WY specified by "D".	5	0	0	0	0	0	0
F148 P148	Self- diagnostic error set	ERR PERR	n (n: k100 to K299)	Stores the self-diagnostic error number "n" in (DT9000), turns R9000 on, and turns on the ERROR LED.	3	0	0	0	0	0	0
F149 P149	Message display	MSG PMSG	S	Displays the character constant of "S" in the connected programming tool.	13	0	0	0	0	0	0

*1) The instruction is available for FP0 T32 (V2.3 or later) and FP-e.

*2) This instruction is available for FP0 V1.20 or later and FP-e.

*3) This instruction is available for FP-X V1.20 or later and FP Σ 32k type.

*4) This instruction is available for FP-X V2.50 or later and FP Σ V3.20 or later.s

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F150	Data read from	READ	S1, S2,	Reads the data from the	9	×	×	Δ	×	0	0
P150 F151	intelligent unit Data write into	PREAD WRT	n, D S1, S2,	intelligent unit. Writes the data into the intelligent	Ŭ	<u> </u>	<u> </u>	*3	<u> </u>	0	0
P151	intelligent unit	PWRT	n, D	unit.	9	\times	\times	∆ *3	\times	0	0
F152 P152	Data read from MEWNET-F slave station	RMRD PRMRD	S1, S2, n, D	Reads the data from the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	×	×	×	×	0	0
F153 P153	Data write into MEWNET-F slave station	RMWT PRMWT	S1, S2, n, D	Writes the data into the intelligent unit at the MEWNET-F (remote I/O) slave station.	9	×	×	×	×	0	0
F155 P155	Sampling	SMPL PSMPL	-	Starts sampling data.	1	×	0	∆ *5	∆ *4	0	\odot
F156 P156	Sampling trigger	STRG PSTRG	-	When the trigger of this instruction turns on, the sampling trace stops.	1	×	0	∆ *5	∆ *4	0	0
F157 P157	Time addition	CADD PCADD	S1, S2, D	The time after (S2+1, S2) elapses from the time of (S1+2, S1+1, S1) is stored in (D+2, D+1, D).	9	∆ *1	0	0	0	0	0
F158 P158	Time subtraction	CSUB PCSUB	S1, S2, D	The time that results from subtracting (S2+1, S2) from the time (S1+2, S1+1, S1) is stored in (D+2, D+1, D).	9	∆ *1	0	0	0	0	0
F159 P159	Serial port communication	MTRN PMTRN	S, n, D	This is used to send data to an external device through the specified CPU COM port or MCU COM port.	7	×	0	0	0	∆ *2	∆ *2
F161 P161	MCU serial port reception	MRCV PMRCV	S, D1, D2	Data is received from external equipment via the COM port of the specified MCU.	7	×	×	×	×	∆ *2	∆ *2
BIN ari	thmetic instruction			-							
F160 P160	Double word (32-bit) data square root	DSQR PDSQR	S, D	√ <u>(S)</u> →(D)	7	×	0	0	0	0	0
	peed counter/Pulse				r –	-					
FO	High-speed counter and Pulse output controls	MV	S, DT9052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT9052.	5	0					
1	Change and read of the elapsed value	DMV	S, DT9044	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area.	7	0					
	of high-speed counter and Pulse output		DT9044, D	Transfers value in high-speed counter and Pulse output elapsed value area to (D+1, D).	7	0					$\sum_{i=1}^{n}$
F166	High-speed counter output set (with channel specification)	HC1S	n, S, Yn	Turns output Yn on when the elapsed value of the built-in high- speed counter reaches the target value of (S+1, S).	11	0					

*1) The instruction is available for FP0 T32 (V2.3 or later) and FP-e.

*2) The instruction is available for FP2/FP2SH Ver. 1.5 or later, and the pulse execution type can be specified. FP10SH cannot be used.

*3) This instruction is available for FP Σ Ver. 2.0 or later.

*4) This instruction is only available for FP-X Ver.2.0 or later.

*5) This instruction is available for FP Σ Ver. 3.10 or later.

Num- ber	Name	Boo- lean	Operand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F167	High-speed counter output reset (with channel specification)	HC1R	n, S, Yn	Turns output Yn off when the elapsed value of the built-in high- speed counter reaches the target value of (S+1, S).	11	0					
F168	Positioning control (with channel specification)	SPD1	S, n	Outputs a positioning pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5	0					
F169	Pulse output (with channel specification)	PLS	S, n	Outputs a pulse from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5	0					
F170	PWM output (with channel specification)	PWM	S, n	Performs PWM output from the specified output (Y0 or Y1) according to the contents of the data table beginning at "S".	5	0		\square			
	peed counter/Pulse ou			DR		N	r	Ň	\	\ \	
F0	High-speed counter and Pulse output controls	MV	S, DT90052	Performs high-speed counter and Pulse output controls according to the control code specified by "S". The control code is stored in DT90052.	5		0				
F1	Change and read of the elapsed value of high- speed counter	DMV	S, DT90300	Transfers (S+1, S) to high-speed counter and Pulse output elapsed value area (DT90045, DT90044).	7		0				
	and Pulse output		DT90300, D	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7		0				
F165	Cam control	CAM0	S	Controls cam operation (on/off patterns of each cam output) according to the elapsed value of the high-speed counter.	з		0				
F166	Target value much on (with channel specification) (High-speed counter control/Pulse output control)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the high-speed counter or pulse output reaches the target value of (S+1, S).	11		0				
F167	Target value much off (with channel specification) (High-speed counter control/Pulse output control)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the high-speed counter or pulse output reaches the target value of (S+1, S).	11		0				
F171	Pulse output (JOG positioning type 0/1) (Trapezoidal control)	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5		0				
F172	Pulse output (JOG operation 0 and 1)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5		0				
F173	PWM output (with channel specification)	РШМН	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5		0				\backslash

Num- ber	Name	Boolean	Operand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F174	Pulse output (Selectable data table control operation)	SPOH	S, n	Outputs the pulses from the specified channel according to the data table specified by S.	5		0				
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5		0				
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5		×				
F177	Pulse output (Home return)	HOME	S, n	Performs the home return according to the specified data table.	7		0		/		
F178	Input pulse measurement (No. of pulses, cycle for input pulses)	PLSM	S1, S2, D	Measures the number of pulses and cycle of pulses to be input to the high-speed counter of the specified channel.	5		0				

Num- ber	Name	Boo- lean	Operand	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
High s F0	peed counter/Pulse of High-speed	output instr MV	uction for FPΣ S, DT90052	/FP-X Performs high-speed counter		Ν	Ν				1
10	counter and Pulse output controls		6, 0100002	and Pulse output controls according to the control code specified by "S". The control code is stored in DT90052.	5			0	0		
F1	Change and read of the elapsed value of high- speed counter	DMV	FP∑: S, DT90044 FP-X: S, DT90300	Transfers (S+1, S) to high- speed counter and Pulse output elapsed value area (DT90045, DT90044).	7			0	0		
	and Pulse output		FP∑: DT90044, D FP-X: DT90300, D	Transfers value in high-speed counter and Pulse output elapsed value area (DT90045, DT90044) to (D+1, D).	7		\square	0	0		
F166	Target value much on (with channel specification)	HC1S	n, S, D	Turns output Yn on when the elapsed value of the built-in high-speed counter reaches the target value of (S+1, S).	11	\setminus	\square	0	0		
F167	Target value much off (with channel specification)	HC1R	n, S, D	Turns output Yn off when the elapsed value of the built-in high-speed counter reaches the target value of (S+1, S).	11		\backslash	0	0		
F171	Pulse output (with channel specification) (Trapezoidal control and home return)	SPDH	S, n	Positioning pulses are output from the specified channel, in accordance with the contents of the data table that starts with S.	5	\setminus		0	0		
F172	Pulse output (with channel specification) (JOG operation)	PLSH	S, n	Pulse strings are output from the specified output, in accordance with the contents of the data table that starts with S.	5			0	0		
F173	PWM output (with channel specification)	PWMH	S, n	PWM output is output from the specified output, in accordance with the contents of the data table that starts with S.	5			0	0		
F174	Pulse output (with channel specification) (Selectable data table control operation)	SPOH	S, n	Outputs the pulses from the specified channel according to the data table specified by S.	5			0	0		
F175	Pulse output (Linear interpolation)	SPSH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms a straight line.	5			∆ *2	0		
F176	Pulse output (Circular interpolation)	SPCH	S, n	Pulses are output from channel, in accordance with the designated data table, so that the path to the target position forms an arc.	5			∆ *2	×		

*1) The elapsed value area differs depending on used channels.

*2) This instruction is available for FP Σ C32T2, C28P2, C32T2H and C28P2H.

Num -ber	Name	Boolean	Ope- rand	Description	Steps	-P0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
											FP2
Screer	n display instruc	tions									
F180	FP-e screen display registration	SCR	S1, S2, S3, S4	Register the screen displayed on the FP-e.	9	∆ *1	×	×	×	×	×
F181	FP-e screen display switching	DSP	S	Specify the screen to be displayed on the FP-e.	3	∆ *1	×	×	×	Х	×
Basic	function instruct	ion									
F182	Time constant processing	FILTR	S1, S2, S3, D	Executes the filter processing for the specified input.	9	×	0	∆ *2	∆ *3	×	×
F183	Auxiliary timer (32-bit)	DSTM	S, D	Turn on the specified output and R900D after 0.01 s. × set value.	7	0	0	0	0	0	∆ *4
Data ti	ransfer instruction	ons									
F190 P190	Three 16-bit data move	MV3 PMV3	S1, S2, S3, D	(S1)→(D), (S2)→(D+1), (S3)→(D+2)	10	×	0	0	0	0	0
F191 P191	Three 32-bit data move	DMV3 PDMV3	S1, S2, S3, D	(S1+1, S1)→(D+1, D), (S2+1, S2)→(D+3, D+2), (S3+1, S3)→(D+5, D+4)	16	×	0	0	0	0	0
Logic	operation instruc	ctions									
F215 P215	32-bit data AND	DAND PDAND	S1, S2, D	(S1+1, S1) AND (S2+1, S2)→(D+1, D)	7	×	0	0	0	0	0
F216 P216	32-bit data OR	DOR PDOR	S1, S2, D	(S1+1, S1) OR (S2+1, S2)→(D+1, D)	12	×	0	0	0	0	0
F217 P217	32-bit data XOR	DXOR PDXOR	S1, S2, D	{ <u>(S1+1, S1</u>) AND (S2+1, S2)} OR {(S1+1, S1) AND (S2+1, S2)}→(D+1, D)	12	×	0	0	0	0	0
F218 P218	32-bit data XNR	DXNR PDXNR	S1, S2, D	{ <u>(S1+1, S1</u>) AND (S2+1, S2)} OR {(S1+1, S1) AND (S2+1, S2)}→(D+1, D)	12	×	0	0	0	0	0
F219 P219	Double word (32-bit) data unites	DUNI PDUNI	S1, S2, S3, D	{(S1+1, S1) AND <u>(S3+1, S3)</u> } OR {(S2+1, S2) AND (S3+1, S3)}→(D+1, D)	16	×	0	0	0	0	0
	onversion instru										
F230 P230	Time data → second conversion	TMSEC PTMSEC	S, D	The specified time data (a date and time) is changed to the second data.	6	×	0	∆ *5	∆ *6	∕∆ *7	∕∆ *7
F231 P231	Second data→ time conversion	SECTM PSECTM	S, D	The specified second data is changed into time data (a date and time).	6	×	0	∆ *5	∆ *6	∆ *7	∆ *7

*1) This instruction is available for FP-e only.

*2) This instruction is available for FP Σ Ver. 3.10 or later.

*3) This instruction is only available for FP-X Ver.2.0 or later.

*4) This instruction is available for FP10SH Ver. 3.10 or later.

*5) This instruction is available for FP Σ 32k type.

*6) This instruction is available for FP-X Ver. 1.13 or later.

*7) This instruction is available for FP2/FP2SH Ver. 1.5 or later.FP10SH cannot be used.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
F235 P235	16-bit binary data → Gray code conversion	GRY PGRY	S, D	Converts the 16-bit binary data of "S" to gray codes, and the converted result is stored in the "D".	6	×	0	0	0	0	0
F236 P236	32-bit binary data → Gray code conversion	DGRY PDGRY	S, D	Converts the 32-bit binary data of (S+1, S) to gray code, and the converted result is stored in the (D+1, D).	8	×	0	0	0	0	0
F237 P237	16-bit gray code → binary data conversion	gbin Pgbin	S, D	Converts the gray codes of "S" to binary data, and the converted result is stored in the "D".	6	×	0	0	0	0	0
F238 P238	32-bit gray code → binary data conversion	DGBIN PDGBIN	S, D	Converts the gray codes of (S+1, S) to binary data, and the converted result is stored in the (D+1, D).	8	×	0	0	0	0	0
F240 P240	Bit line to bit column conversion	COLM PCOLM	S, n, D	The values of bits 0 to 15 of "S" are stored in bit "n" of (D to DC+15).	8	×	0	0	0	0	0
F241 P241	Bit column to bit line conversion	LINE PLINE	S, n, D	The values of bit "n" of (S) to (S+15) are stored in bits 0 to 15 of "D".	8	×	0	0	0	0	0
F250	Binary data → ASCII conversion	ΒΤΟΑ	S1, S2, n, D	Converts multiple binary data to multiple ASCII data.	12	×	0	∆ *1	0	×	Х
F251	ASCII → binary data conversion	АТОВ	S1, S2, n, D	Converts multiple ASCII data to multiple binary data.	12	×	0	∆ *1	0	Х	×
F252	ASCII data check	АСНК	S1, S2, n	Checks the ASCII data strings to be used in F251 (ATOB) instruction.	10	×	0	∆ *2	∆ *3	Х	×
	cter strings instructi		04								
F257 P257	Comparing character strings	SCMP	S1, S2	These instructions compare two specified character strings and output the judgment results to a special internal relay.	10	×	0	0	0	0	0
F258 P258	Character string coupling	SADD	S1, S2, D	These instructions couple one character string with another.	12	×	0	0	0	0	0
F259 P259	Number of characters in a character string	LEN	S, D	These instructions determine the number of characters in a character string.	6	×	0	0	0	0	0
F260 P260	Search for character string	SSRC	S1, S2, D	The specified character is searched in a character string.	10	\times	0	0	0	0	0
F261 P261	Retrieving data from character strings (right side)	RIGHT	S1, S2, D	These instructions retrieve a specified number of characters from the right side of the character string.	8	×	0	0	0	0	0
F262 P262	Retrieving data from character strings (left side)	LEFT	S1, S2, D	These instructions retrieve a specified number of characters from the left side of the character string.	8	×	0	0	0	0	0
F263 P263	Retrieving a character string from a character string	MIDR	S1, S2, S3, D	These instructions retrieve a character string consisting of a specified number of characters from the specified position in the character string.	10	×	0	0	0	0	0
F264 P264	Writing a character string to a character string	MIDW	S1, S2, D, n	These instructions write a specified number of characters from a character string to a specified position in the character string.	12	×	0	0	0	0	0
F265 P265	Replacing character strings	SREP	S, D, p, n	A specified number of characters in a character string are rewritten, starting from a specified position in the character string.	12	×	0	0	0	0	0

*1) This instruction is available for FP Σ 32k type.

*2) This instruction is available for FP Σ Ver. 3.10 or later.

*3) This instruction is only available for FP-X Ver.2.0 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
	type data process				1	1	r –	1	1	1	
F270 P270	Maximum value (word data (16-bit))	MAX PMAX	S1, S2, D	Searches the maximum value in the word data table between the "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+1".	8	∆ *1	0	0	0	0	0
F271 P271	Maximum value (double word data (32- bit))	DMAX PDMAX	S1, S2, D	Searches for the maximum value in the double word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+2".	8	∆ *1	0	0	0	0	0
F272 P272	Minimum value (word data (16- bit))	min Pmin	S1, S2, D	Searches for the minimum value in the word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+1".	8	∆ *1	0	0	0	0	0
F273 P273	Minimum value (double word data (32-bit))	dmin Pdmin	S1, S2, D	Searches for the minimum value in the double word data table between the area selected with "S1" and "S2", and stores it in the "D". The address relative to "S1" is stored in "D+2".	8	∆ *1	0	0	0	0	0
F275 P275	Total and mean values (word data (16- bit))	MEAN PMEAN	S1, S2, D	The total value and the mean value of the word data with sign from the area selected with "S1" to "S2" are obtained and stored in the "D".	8	∆ *1	0	0	0	0	0
F276 P276	Total and mean values (double word data (32-bit))	DMEAN PDMEAN	S1, S2, D	The total value and the mean value of the double word data with sign from the area selected with "S1" to "S2" are obtained and stored in the "D".	8	∆ *1	0	0	0	0	0
F277 P277	Sort (word data (16-bit))	SORT PSORT	S1, S2, S3	The word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	∆ *1	0	0	0	0	0
F278 P278	Sort (double word data (32- bit))	DSORT PDSORT	S1, S2, S3	The double word data with sign from the area specified by "S1" to "S2" are sorted in ascending order (the smallest word is first) or descending order (the largest word is first).	8	∆ *1	0	0	0	0	0
F282 P282	Scaling of 16-bit data	SCAL PSCAL	S1, S2, D	The output value Y is found for the input value X by performing scaling for the given data table.	8	∆ *1	0	0	0	0	0
F283 P283	Scaling of 32-bit data	DSCAL PDSCAL	S1, S2, D	The output value Y is found for the input value X by performing scaling for the given data table.	10	×	0	0	0	0	0
F284 P284	Inclination output of 16-bit data	RAMP	S1, S2, S3, D	Executes the linear output for the specified time from the specified initial value to the target value.	10	×	0	∆ *2	∆ *2	×	×
	type non-linear fu			When \$1\$\$2 \$1 5	r –	1	1			1	
F285 P285	Upper and lower limit control (16-bit data)	LIMT PLIMT	S1, S2, S3, D	When S1>S3, S1→D When S1 <s3, s2→d<br="">When S1<or =="" s3<or="S2," s3→d<="" td=""><td>10</td><td>∆ *1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></or></s3,>	10	∆ *1	0	0	0	0	0

*1) This instruction is only available for FP-e Ver.1.2 or later.

*2) This instruction is only available for FP-X Ver.2.0 or later, and FP Σ Ver. 3.10 or later.

Num-			Ope-		sd	-P-e	JR	Σ	×-	2	-P10SH
ber	Name	Boolean	rand	Description	Steps	FP0/FP-e	FPOR	ΣdJ	X-d∃	EP2	FP2SH/FP10SH
F286 P286	Upper and lower limit control (32-bit data)	dlimt Pdlimt	S1, S2, S3, D	When $(S1+1, S1)>(S3+1, S3)$, $(S1+1, S1)\rightarrow(D+1, D)$ When $(S2+1, S2)<(S3+1, S3)$, $(S2+1, S2)\rightarrow(D+1, D)$ When $(S1+1, S1)<$ or = $(S3+1, S3)<$ or = $(S2+1, S2)$, $(S3+1, S3)\rightarrow(D+1, D)$	16	∆ *1	0	0	0	0	0
F287 P287	Deadband control (16-bit data)	BAND PBAND	S1, S2, S3, D	When S1>S3, S3–S1 \rightarrow D When S2 <s3, s3–s2<math="">\rightarrowD When S1<or 0<math="" =="" s3<or="S2,">\rightarrowD</or></s3,>	10	∆ *1	0	0	0	0	0
F288 P288	Deadband control (32-bit data)	DBAND PDBAND	S1, S2, S3, D	When $(S1+1, S1)>(S3+1, S3)$, $(S3+1, S3)-(S1+1, S1)\rightarrow(D+1, D)$ When $(S2+1, S2)<(S3+1, S3)$, $(S3+1, S3)-(S2+1, S2)\rightarrow(D+1, D)$ When $(S1+1, S1)<$ or = $(S3+1, S3)<$ or = $(S2+1, S2), O\rightarrow(D+1, D)$	16	∆ *1	0	0	0	0	0
F289 P289	Zone control (16-bit data)	ZONE PZONE	S1, S2, S3, D	When S3<0, S3+S1→D When S3=0, 0→D When S3>0, S3+S2→D	10	∆ *1	0	0	0	0	0
F290 P290	Zone control (32-bit data)	DZONE PDZONE	S1, S2, S3, D	When $(S3+1, S3)<0$, $(S3+1, S3)+(S1+1, S1)\rightarrow(D+1, D)$ When $(S3+1, S3)=0$, $0\rightarrow(D+1, D)$ When $(S3+1, S3)>0$, $(S3+1, S3)+(S2+1, S2)\rightarrow(D+1, D)$	16	∆ *1	0	0	0	0	0
BCD ty	pe real number op	peration instr	uctions	· · · · · · ·							
F300 P300	BCD type sine operation	BSIN PBSIN	S, D	SIN(S1+1, S1)→(D+1, D)	6	×	×	×	×	0	0
F301 P301	BCD type cosine operation	BCOS PBCOS	S, D	COS(S1+1, S1)→(D+1, D)	6	×	×	х	×	0	0
F302 P302	BCD type tangent operation	BTAN PBTAN	S, D	TAN(S1+1, S1)→(D+1, D)	6	×	Х	×	×	0	0
F303 P303	BCD type arcsine operation	BASIN PBASIN	S, D	SIN ⁻¹ (S1+1, S1)→(D+1, D)	6	×	×	×	Х	0	0
F304 P304	BCD type arccosine operation	BACOS PBACOS	S, D	COS ⁻¹ (S1+1, S1)→(D+1, D)	6	×	×	×	×	0	0
F305 P305	BCD type arctangent operation	BATAN PBATAN	S, D	TAN ⁻¹ (S1+1, S1)→(D+1, D)	6	×	×	×	×	0	0
Floatin	g-point type real n	umber opera	tion instru	uctions						·	
F309 P309	Floating-point type data move	FMV PFMV	S, D	(S+1, S)→(D+1, D)	8	∆ *2	0	0	0	0	0
F310 P310	Floating-point type data addition	F+ PF+	S1, S2, D	(S1+1, S1)+(S2+1, S2)→(D+1, D)	14	∆ *2	0	0	0	0	0
F311 P311	Floating-point type data subtraction	F- PF-	S1, S2, D	(S1+1, S1)–(S2+1, S2)→(D+1, D)	14	∆ *2	0	0	0	0	0
F312 P312	Floating-point type data multiplication	F* PF*	S1, S2, D	(S1+1, S1)×(S2+1, S2)→(D+1, D)	14	∆ *2	0	0	0	0	0
F313 P313	Floating-point type data division	F% PF%	S1, S2, D	(S1+1, S1)÷(S2+1, S2)→(D+1, D)	14	∆ *2	0	0	0	0	0

 \bigcirc : Available, \times : Not available, \triangle : Not available partially *1) This instruction is only available for FP-e Ver.1.2 or later. *2) This instruction is available for FP-e Ver.1.21 or later, and FP0 V2.1 or later.

Num- ber	Name	Boo- lean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F314 P314	Floating-point type data sine operation	SIN PSIN	S, D	SIN(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F315 P315	Floating-point type data cosine operation	COS PCOS	S, D	COS(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F316 P316	Floating-point type data tangent operation	TAN PTAN	S, D	TAN(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F317 P317	Floating-point type data arcsine operation	ASIN PASIN	S, D	SIN ⁻¹ (S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F318 P318	Floating-point type data arccosine operation	ACOS PACOS	S, D	COS ⁻¹ (S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F319 P319	Floating-point type data arctangent operation	ATAN PATAN	S, D	TAN ⁻¹ (S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F320 P320	Floating-point type data natural logarithm	LN PLN	S, D	LN(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F321 P321	Floating-point type data exponent	EXP PEXP	S, D	EXP(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F322 P322	Floating-point type data logarithm	LOG PLOG	S, D	LOG(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F323 P323	Floating-point type data power	PWR PPWR	S1, S2, D	(S1+1, S1) ^ (S2+1, S2)→(D+1, D)	14	∆ *1	0	0	0	0	0
F324 P324	Floating-point type data square root	FSQR PFSQR	S, D	√(S+1, S)→(D+1, D)	10	∆ *1	0	0	0	0	0
F325 P325	16-bit integer data to floating-point type data conversion	FLT PFLT	S, D	Converts the 16-bit integer data with sign specified by "S" to real number data, and the converted data is stored in "D".	6	∆ *1	0	0	0	0	0
F326 P326	32-bit integer data to floating-point type data conversion	DFLT PDFLT	S, D	Converts the 32-bit integer data with sign specified by (S+1, S) to real number data, and the converted data is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F327 P327	Floating-point type data to 16-bit integer conversion (the largest integer not exceeding the floating-point type data)	int Pint	S, D	Converts real number data specified by (S+1, S) to the 16- bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in "D".	8	∆ *1	0	0	0	0	0
F328 P328	Floating-point type data to 32-bit integer conversion (the largest integer not exceeding the floating-point type data)	dint Pdint	S, D	Converts real number data specified by (S+1, S) to the 32- bit integer data with sign (the largest integer not exceeding the floating-point data), and the converted data is stored in (D+1, D).	8	∆ *1	0	0	0	0	0

*1) This instruction is available for FP-e Ver.1.21 or later, and FP0 V2.1 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F329 P329	Floating-point type data to 16-bit integer con- version (rounding the first decimal point down to integer)	FIX PFIX	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (rounding the first decimal point down), and the converted data is stored in "D".	8	∆ *1	0	0	0	0	0
F330 P330	Floating-point type data to 32-bit integer con- version (rounding the first decimal point down to integer)	DFIX PDFIX	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign (rounding the first decimal point down), and the converted data is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F331 P331	Floating-point type data to 16-bit integer con- version (rounding the first decimal point off to integer)	ROFF PROFF	S, D	Converts real number data specified by (S+1, S) to the 16-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in "D".	8	∆ *1	0	0	0	0	0
F332 P332	Floating-point type data to 32-bit integer con- version (rounding the first decimal point off to integer)	DROFF PDROFF	S, D	Converts real number data specified by (S+1, S) to the 32-bit integer data with sign (rounding the first decimal point off), and the converted data is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F333 P333	Floating-point type data round- ding the first decimal point down	FINT PFINT	S, D	The decimal part of the real number data specified in (S+1, S) is rounded down, and the result is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F334 P334	Floating-point type data round- ding the first decimal point off	FRINT PFRINT	S, D	The decimal part of the real number data stored in (S+1, S) is rounded off, and the result is stored in (D+1, D).	8	∧ *1	0	0	0	0	0
F335 P335	Floating-point type data sign changes	F+/- PF+/-	S, D	The real number data stored in (S+1, S) is changed the sign, and the result is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F336 P336	Floating-point type data absolute	FABS PFABS	S, D	Takes the absolute value of real number data specified by (S+1, S), and the result (absolute value) is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F337 P337	Floating-point type data degree → radian	RAD PRAD	S, D	The data in degrees of an angle specified in (S+1, S) is converted to radians (real number data), and the result is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
F338 P338	Floating-point type data radian → degree	DEG PDEG	S, D	The angle data in radians (real number data) specified in (S+1, S) is converted to angle data in degrees, and the result is stored in (D+1, D).	8	∆ *1	0	0	0	0	0
	g-point type real numb					r	1				
F345 P345	Floating-point type data compare	FCMP PFCMP	S1, S2	$(S1+1, S1)>(S2+1, S2) \rightarrow R900A:$ on $(S1+1, S1)=(S2+1, S2) \rightarrow R900B$ on $(S1+1, S1)<(S2+1, S2) \rightarrow R900C:$ on	10	×	0	0	0	0	0
F346 P346	Floating-point type data band compare	FWIN PFWIN	S1, S2, S3	$(S1+1, S1)>(S3+1, S3) \rightarrow R900A:$ on (S2+1, S2)<or = $(S1+1, S1)<$ or = $(S3+1, S3) \rightarrow R900B$ on $(S1+1, S1)<(S2+1, S2) \rightarrow R900C:$ on	14	×	0	0	0	0	0

 \bigcirc : Available, \times : Not available, \triangle : Not available partially *1) This instruction is available for FP-e Ver.1.21 or later, and FP0 V2.1 or later.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FΡΣ	FP-X	FP2	FP2SH/FP10SH
F347 P347	Floating-point type data upper and lower limit control	FLIMT PFLIMT	S1, S2, S3, D	When $(S1+1, S1)>(S3+1, S3)$, $(S1+1, S1) \rightarrow (D+1, D)$ When $(S2+1, S2)<(S3+1, S3)$, $(S2+1, S2) \rightarrow (D+1, D)$ When $(S1+1, S1)<$ or = $(S3+1, S3)<$ or = $(S2+1, S2)$, $(S3+1, S3)\rightarrow$ (D+1, D)	17	×	0	0	0	0	0
F348 P348	Floating-point type data dead-band control	FBAND PFBAND	S1, S2, S3, D	When $(S1+1, S1)>(S3+1, S3)$, $(S3+1, S3)-(S1+1, S1)\rightarrow(D+1, D)$ When $(S2+1, S2)<(S3+1, S3)$, $(S3+1, S3)-(S2+1, S2)\rightarrow(D+1, D)$ When $(S1+1, S1)<$ or = $(S3+1, S3)<$ or = $(S2+1, S2)$, $0.0\rightarrow(D+1, D)$	17	×	0	0	0	0	0
F349 P349	Floating-point type data zone control	FZONE PFZONE	S1, S2, S3, D	When $(S3+1, S3)<0.0$, $(S3+1, S3)+(S1+1, S1)\rightarrow(D+1, D)$ When $(S3+1, S3)=0.0, 0.0\rightarrow (D+1, D)$ When $(S3+1, S3)>0.0$, $(S3+1, S3)+(S2+1, S2)\rightarrow(D+1, D)$	17	×	0	0	0	0	0
F350 P350	Floating-point type data maxi-mum value	FMAX PFMAX	S1, S2, D	Searches the maximum value in the real number data table between the area selected with "S1" and "S2", and stores it in the (D+1, D). The address relative to "S1" is stored in (D+2).	8	×	×	×	×	0	0
F351 P351	Floating-point type data mini-mum value	FMIN PFMIN	S1, S2, D	Searches the minimum value in the real number data table between the area selected with "S1" and "S2", and stores it in the (D+1, D). The address relative to "S1" is stored in (D+2).	8	×	Х	×	×	0	0
F352 P352	Floating-point type data total and mean values	FMEAN PFMEAN	S1, S2, D	The total value and the mean value of the real number data from the area selected with "S1" to "S2" are obtained. The total value is stored in the (D+1, D) and the mean value is stored in the (D+3, D+2).	8	×	×	×	×	0	0
F353 P353	Floating-point type data sort	FSORT PFSORT	S1, S2, S3	The real number data from the area specified by "S1" to "S2" are stored in ascending order (the smallest word is first) or descending order (the largest word is first).	8	×	×	×	×	0	0
F354 P354	Scaling of real number data	FSCAL PFSCAL	S1, S2, D	Scaling (linearization) on a real number data table is performed, and the output (Y) to an input value (X) is calculated.	12	×	0	∆ *1	∆ *2	∆ *3	∆ *3

*1) This instruction is available for FP $\!\Sigma$ 32k type.

*2) This instruction is available for FP-X Ver. 1.13 or later.

*3) This instruction is available for FP2/FP2SH Ver. 1.5 or later. FP10SH cannot be used.

Num- ber	Name	Boolean	Ope- rand	Description	Steps	FP0/FP-e	FPOR	FPΣ	FP-X	FP2	FP2SH/FP10SH
F355	eries processing i PID processing	PID	S	PID processing is performed		1	1				
F333	PiD processing	רוס	3	depending on the control value (mode and parameter) specified by (S to S+2) and (S+4 to S+10), and the result is stored in the (S+3).	4	∆ *1	0	0	0	0	0
F356	Easy PID	EZPID	S1,	Temperature control (PID) can be				Δ	Δ		
			S2,	easily performed using the image	10	×	0	*2	*2	×	×
0	 		S3, S4	of a temperature controller.							
Compa F373	are instructions	DTR	S, D	If the data in the 16-bit area		1	1				
P373	revision detection	PDTR	3, D	specified by "S" has changed since the previous execution, internal relay R9009 (carry flag) will turn on. "D" is used to store the data of the previous execution.	6	×	0	0	0	0	0
F374	32-bit data	DDTR	S, D	If the data in the 32-bit area							
P374	revision detection	PDDTR		specified by (S+1, S) has changed since the previous execution, internal relay R9009 (carry flag) will turn on. (D+1, D) is used to store the data of the previous execution.	6	×	0	0	0	0	0
Index r	register bank proc	essing instru	ictions								
F410 P410	Setting the index register bank number	SETB PSETB	n	Index register (I0 to ID) bank number change over.	4	×	×	×	×	Х	0
F411 P411	Changing the index register bank number	CHGB PCHGB	n	Index register (I0 to ID) bank number change over with remembering preceding bank number.	4	×	×	×	×	×	0
F412 P412	Restoring the index register bank number	РОРВ	-	Changes index register (I0 to ID) bank number back to the bank before F411 (CHGB)/P411 (PCHGB) instruction.	2	×	×	×	×	×	0
	gister bank proces				1	<u> </u>	1		1		
P414	Setting the file register bank number	PSBFL	n	File register bank number change over.	4	×	×	×	×	×	∆ *3
F415 P415	Changing the file register bank number	CBFL PCBFL	n	File register bank number change over with remembering preceding bank number.	4	×	×	×	×	×	∆ *3
F416 P416	Restoring the file register bank number	PBFL PPBFL	-	Changes file register bank number back to the bank before F415 (CBFL)/P415 (PCBFL) instruction.	2	×	×	×	×	×	∆ *3

*1) This instruction is available for FP0 (V2.1 or later) only.

*2) This instruction is available for FP-X V.1.20 or later, and FP Σ 32k type.

*3) This instruction is not available for FP10SH.

11.4 Table of Error codes

Difference in ERROR display

There are differences in the way errors are displayed depending on the model.

Model	Display		Display method
FP1,FP-M,FP2,FP3,FP10SH	LED	ERROR.	Continually lit
FP Σ ,FP0, FP0R, FP-X	LED	ERROR/ALARM	Flashes/continually lit
FP-e	Screen display	ERR.	Continually lit

Error Confirmation When ERROR Turns ON

When the "ERROR" on the control unit (CPU unit) turns on or flashes, a self-diagnostic error or syntax check error has occurred. Confirm the contents of the error and take the appropriate steps.

-Error Confirmation Method

Procedure:1.Use the programming tool software to call up the error code.

By executing the "STATUS DISPLAY", the error code and content of error are displayed.

2. Check the error contents in the table of error codes using the error code ascertained above.

-Syntax check error

This is an error detected by the total check function when there is a syntax error or incorrect setting written in the program. When the mode selector is switched to the RUN mode, the total check function automatically activates and eliminates the possibility of incorrect operation from syntax errors in the program.

When a syntax check error is detected

-ERROR turns on or flashes.

-Operation will not begin even after switching to the RUN mode.

-Remote operation cannot be used to change to RUN mode.

Clearing a syntax check error

By changing to the PROG. mode, the error will clear and the ERROR will turn off.

Steps to take for syntax error

Change to the PROG. mode, and then execute the total check function while online mode with the programming tool connected. This will call up the content of error and the address where the error occurred.

Correct the program while referring to the content of error.

-Self-diagnostic Error

This error occurs when the control unit (CPU unit) self-diagnostic function detects the occurrence of an abnormality in the system. The self-diagnostic function monitors the memory abnormal detection, I/O abnormal detection, and other devices.

When a self-diagnostic error occurs

- The ERROR turns on or flashes.

- The operation of the control unit (CPU unit) might stop depending on the content of error and the system register setting.

- The error codes will be stored in the special data register DT9000(DT90000).

- In the case of operation error, the error address will be stored in the DT9017(DT90017) and DT9018(DT90018).

Clearing the self-diagnostic error

At the "STATUS DISPLAY", execute the "error clear". Error codes 43 and higher can be cleared. -You can use the initialize/test switch to clear an error. However, this will also clear the contents of operation memory.

-Errors can also be cleared by turning off and on the power while in the PROG. mode.

However, the contents of operation memory, not stored with the hold type data, will also be cleared. -The error can also be cleared depending on the self-diagnostic error set instruction F148(ERR).

Steps to take for self-diagnostic error

The steps to be taken will differ depending on the error contents. For more details, use the error code obtained above and consult the table of self-diagnostic error codes.

MEWTOCOL-COM Transmission Errors

These are error codes from a PC or other computer device that occur during an abnormal response when communicating with a PLC using MEWTOCOL-COM.

11.4.1 Table of Syntax Check Error

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E1	Syntax error	Stops	A program with a syntax error has been written. ⇒ Change to PROG. mode and correct the error.	А	A	А	А	А	А	А	А
E2 (Note)	Duplicated output error	Stops	Two or more OT(Out) instructions and KP(Keep) instructions are programmed using the same relay. Also occurs when using the same timer/counter number. ⇒ Change to PROG. mode and correct the program so that one relay is not used for two or more OT instructions. Or, set the duplicated output to "enable" in system register 20. A timer/counter instruction double definition error will be detected even if double output permission has been selected.	А	А	А	А	А	A	А	А
E3	Not paired error	Stops	For instructions which must be used in a pair such as jump (JP and LBL), one instruction is either missing or in an incorrect position. ⇒ Change to PROG. mode and enter the two instructions which must be used in a pair in the correct positions.	A	A	A	А	A	A	A	А
E4	Parameter mismatch error	Stops	An instruction has been written which does not agree with system register settings. For example, the number setting in a program does not agree with the timer/counter range setting. ⇒ Change to PROG. mode, check the system register settings, and change so that the settings and the instruction agree.	А	A	A	А	A	A	A	A
E5 (Note)	Program area error	Stops	An instruction which must be written in a specific area (main program area or subprogram area) has been written to a different area (for example, a subroutine SUB to RET is placed before an ED instruction). ⇒ Change to PROG. mode and enter the instruction into the correct area.	A	A	A	А	A	A	A	A

A: Available

Note) This error is also detected if you attempt to execute a rewrite containing a syntax error during RUN. In this case, nothing will be written to the CPU and operation will continue.

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E6	Compile memory full error	Stops	The program is too large to compile in the program memory. ⇒ Change to PROG. mode and reduce the total number of steps for the program. -FP10SH If memory expansion is possible, compilation will become possible when the memory is expanded.	A	A	A	A	A		A	A
E7	High-level instruction type error	Stops	In the program, high-level instructions, which execute in every scan and at the leading edge of the trigger, are programmed to be triggered by one contact. (e.g. F0 (MV) and P0 (PMV) are programmed using the same trigger continuously.) ⇒ Correct the program so that the high-level instructions executed in every scan and only at the leading edge are triggered separately.			A	A	A	A	A	А
E8	High-level instruction operand combina- tion error	Stops	There is an incorrect operand in an instruction which requires a specific combination of operands (for example, the operands must all be of a certain type). \Rightarrow Enter the correct combination of operands.	А	A	A	A	A	A	A	A
E9	No program error	Stops	Program may be damaged. \Rightarrow Try to send the program again.							А	A
E10	Rewrite during RUN syntax error	Conti- nues	When inputting with the programming tool software, a deletion, addition or change of order of an instruction(ED, LBL, SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.						A	A	А

11.4.2 Table of Self-Diagnostic Error

	·										
Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E20	CPU error	Stops	Probably a hardware abnormality ⇒Please contact your dealer.						А	А	А
E21	RAM error1										
E22	RAM error2										
E23	RAM error3	Stops	Probably an abnormality in the internal RAM. ⇒Please contact your dealer.						А	А	A
E24	RAM error4										
E25	RAM error5										
E25	Master memory model unmatch error	Stops	The models of master memories are different. Use the master memories created with the same model.					A *1)			
			 FP-e, FP0, FP0R, FPΣ, and FP1 C14, C16: Probably a hardware abnormality. ⇒ Please contact your dealer. FP-X: When the master memory cassette is mounted, the master memory cassette may be damaged. Remove the master memory, and check whether the ERROR turns off. 								
E26	User's ROM error	Stops	 When the ERROR turned off, rewrite the master memory as its contents are damaged, and use it again. When the ERROR does not turn off, please contact your dealer. FP1 C24,C40,C56,C72,and FP-M: Probably an abnormality in the memory unit ⇒Program the memory unit again and try to operate. If the same error is detected, try to operate with another memory unit. 	A	А	А	А	A	А	A	А
			FP2,FP2SH,FP10SH,and FP3: There may be a problem with the installed ROM. -ROM is not installed. -ROM contents are damaged. -Program size stored on the ROM is larger than the capacity of the ROM ⇒Check the contents of the ROM								
E27	Unit installation error	Stops	Units installed exceed the limitations.(i.e.,4 or more link units) ⇒ Turn off the power and re-configure units referring to the hardware manual.			A	A	A	A	A	A
E28	System register error	Stops	Probably an abnormality in the system register. ⇒ Check the system register setting or initialize the system registers.						A		

*1) This error occurs on FP-X Ver2.0 or later.

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E29	Configu- ration parameter error	Stops	A parameter error was detected in the MEWNET-W2 configuration area. Set a correct parameter.						A	A	
E30	Interrupt error 0	Stops	Probably a hardware abnormality. \Rightarrow Please contact your dealer.								
E31	Interrupt error 1	Stops	An interrupt occurred without an interrupt request . A hardware problem or error due to noise is possible. ⇒ Turn off the power and check the noise conditions.	А	A	A	A	A	A	A	A
E32	Interrupt error 2	Stops	There is no interrupt program for an interrupt which occurred. ⇒ Check the number of the interrupt program and change it to agree with the interrupt request.	А	А	A	A	A	A	A	A
E33	Multi-CPU data unmatch error	CPU2 Stops	This error occurs when a FP3/FP10SH is used as CPU2 for a multi-CPU system. ⇒Refer to "Multi-CPU system Manual".							A	A
E34	I/O status error	Stops	An abnormal unit is installed. -FP Σ , FP0R(FP0R mode),FP-X, FP2,FP2SH and FP10SH: Check the contents of special data register DT90036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one. -FP3: Check the contents of special data register DT9036 and locate the abnormal unit. Then turn off the power and replace the unit with a new one.			А	А	А		А	А
E35	MEWNET-F slave illegal unit error	Stops	A unit, which cannot be installed on the slave station of the MEWNET-F link system, is installed on the slave station. ⇒Remove the illegal unit from the slave station.						A	A	А
E36	MEWNET-F (remote I/O) limitation error	Stops	The number of slots or I/O points used for MEWNET-F(remote I/O) system exceeds the limitation. ⇒Re-configure the system so that the number of slots and I/O points is within the specified range.						A	A	A
E37	MEWNET-F I/O mapping error	Stops	I/O overlap or I/O setting that is over the range is detected in the allocated I/O and MEWNET-F I/O map. ⇒Re-configure the I/O map correctly						A	A	A

Error code	Name	Opera -tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E38	MEWNET-F slave I/O terminal mapping error	Stops	I/O mapping for remote I/O terminal boards, remote I/O terminal units and I/O link is not correct. ⇒Re-configure the I/O map for slave stations according to the I/O points of the slave stations.						A	A	А
E39	IC card read error	Stops	 When reading in the program from the IC memory card(due to automatic reading because of the dip switch setting or program switching due to F14(PGRD) instruction): IC memory card is not installed. There is no program file or it is damaged. Writing is disabled. There is an abnormality in the AUTOEXEC.SPG file. Program size stored on the card is larger than the capacity of the CPU. ⇒Install an IC memory card that has the program properly recorded and execute the read once again. 							A	А
E40	I/O error	Sele- ctable	Abnormal I/O unit. FPΣ, FP-X: Check the contents of special data register DT90002 and abnormal FPΣ expansion unit (application cassette for FP-X). Then check the unit. FP2 and FP2SH: Check the contents of special data registers DT90002,DT90003 and abnormal I/O unit. Then check the unit. Selection of operation status using system register21: -to continue operation, set 1 -to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function. MEWNET-TR communication error FP3 and FP10SH: Check the contents of special data registers(FP3:DT9002,DT9003,FP10SH:DT9 0002,DT90003) and the erroneous master unit and abnormal I/O unit. Then check the unit. Selection of operation status using system register21: -to continue operation, set 1 -to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function.				A	A	A	A	A

A: Available

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E41	Intelligent unit error	Selec- table	An abnormality in an intelligent unit. $FP\Sigma$, $FP-X$: Check the contents of special data register "DT90006" and locate the abnormal FP intelligent unit (application cassette for FP-X). FP2, $FP2SH$, and $FP10SH$: Check the contents of special data registers DT90006, DT90007 and locate the abnormal intelligent unit. Then check the unit referring to its manual Selection of operation status using system register22: -to continue operation, set 1 -to stop operation, set 0 FP3: Check the contents of special data registers DT9006, DT9007 and locate the abnormal intelligent unit. Then check the unit referring to its manual Selection of operation status using system register22: -to continue operation, set 1 -to stop operation, set 1 -to stop operation, set 1 -to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function.				A	A	A	A	A
E42	I/O unit verify error	Selec- table	 I/O unit(Expansion unit) wiring condition has changed compared to that at time of powerup. ⇒ Check the contents of special data register (FP0: DT9010, FPΣ, FP-X: DT90010,DT90011) and locate the erroneous expansion unit. It checks whether an expansion connector is in agreement. ⇒ Check the contents of special data register (FP2,FP2SH,and FP10SH:DT90010,DT90011,FP3 DT9010,DT9011) Selection of operation status using system register23: to continue operation, set 1 to stop operation, set 0 Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function. 		A	A	A	A	A	A	A

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E43	System watching dog timer error	Selec- table	Scan time required for program execution exceeds the setting of the system watching dog timer. ⇒ Check the program and modify it so that the program can execute a scan within the specified time. Selection of operation status using system register24: -to continue operation, set 1 -to stop operation, set 0							A	A
E44	Slave station connecting time error for MEWNET-F system	Selec- table	The time required for slave station connection exceeds the setting of the system register 35. Selection of operation status using system register25: -to continue operation, set 1 -to stop operation, set 0						A	A	A
E45	Operation error	Selec- table	Operation became impossible when a high- level instruction was executed. Selection of operation status using system register26: -to continue operation, set K1 -to stop operation, set K0 The address of operation error can be confirmed in either special data registers DT9017 and DT9018, or DT90017 and DT90018. (It varies according to the model to be used.) DT9017, DT9018: FP-e, FP0, FP0R(FP0 mode) DT90017, DT90018: FP Σ , FP-X, FP0R(FP0R mode), FP2, FP2SH, FP10SH Verification is possible in FPWIN GR/Pro at "I/O error" in the status display function.	A	A	A	A	A	A	A	A

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
		Selec- table	S-LINK error Occurs only in FP0-SL1 When one of the S-LINK errors (ERR1, 3 or 4) has been detected, error code E46 (remote I/O (S-LINK) communication error) is stored. Selection of operation status using system register27: -to continue operation, set K1 -to stop operation, set K0		А						
E46	Remote I/O commu- nication error	Selec- table	MEWNET-F communication error A communication abnormally was caused by a transmission cable or during the power- down of a slave station. FP2, FP2SH, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the communication condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the communication condition. Selection of operation status using system register27: -to continue operation, set K1 -to stop operation, set K0						A	A	A
E47	MEW-NET- F attribute error	Selec- table	In the unit on the slave station, an abnormality such as: -missing unit -abnormal intelligent unit was detected. FP2, FP2SH, and FP10SH: Check the contents of special data registers DT90131 to DT90137 and locate the abnormal slave station and recover the slave condition. FP3: Check the contents of special data registers DT9131 to DT9137 and locate the abnormal slave station and recover the slave condition. Selection of operation status using system register28: -to continue operation, set 1 -to stop operation, set 0						A	A	A
E49	Expansion unit power supply sequence error	Stops	The power supply for the expansion unit was turned on after the control unit. Turn on the power supply for the expansion unit at the same time or before the control unit is turned on.					A			
E50	Backup battery error	Conti- nues	The voltage of the backup battery lowered or the backup battery of control unit is not installed. ⇒ Check the installation of the backup battery and then replace battery if necessary. By setting the system register 4, you can disregard this self-diagnostic error.				A	A	A	A	A

Error code	Name	Opera- tion status	Description and steps to take	FP-e	FP0	FPOR	FPΣ	FP-X	FP2	FP2SH	FP10SH
E51	MEWNET-F terminal station error	Conti- nues	Terminal station setting was not properly performed. Check stations at both ends of the communication path, and set them in the terminal station using the dip switches.						A	A	A
E52	MEWNET-F I/O update synchro- nous error	Conti- nues	Set the INITIALIZE/TEST selecto1inmjvbgycfrde892 r to the INITIALIZE position while keeping the mode selector in the RUN position. If the same error occurs after this, please contact your dealer.						A	A	A
E53	Multi-CPU I/O regis- tration error (CPU2 only)	Conti- nues	Abnormality was detected when the multi- CPU system was used. Please contact your dealer.								A
E54	IC memory card back- up battery error	Conti- nues	The voltage of the backup battery for the IC memory card lowered. The BATT.LED does not turn on. Charge or replace the backup battery of IC memory card.(The contents of the IC memory card cannot be guaranteed.)							A	A
E55	IC memory card back- up battery error	Cont- inues	The voltage of the backup battery for IC memory card lowers. The BATT.LED does not turn on. Charge or replace the backup battery of IC memory card. (The contents of the IC memory card cannot be guaranteed.)							A	A
E56	Incompati- ble IC memory card error	Cont- inues	The IC memory card installed is not compatible. Replace the IC memory card compatible with FP2SH/FP10SH.							A	A
E57	No unit for the configu- ration	Conti- nues	MEWNET-W2/MCU The MEWNET-W2 link unit or MCU(Multi communication unit) is not installed in the slot specified using the configuration data. Either install a unit in the specified slot or change the parameter.						A	A	
E100 to E199	Self- diagnostic error set	Stop	The error specified by the F148 (ERR)/P148(PERR) instruction is occurred. \Rightarrow Take steps to clear the error condition according to the specification you chose.	A	A	A	A	A	A		
E200 to E299	by F148 (ERR)/P148 (PERR) instruction	Conti- nues		А	А	А	А	A	A		

11.4.3 Table of MEWTOCOL-COM Communication Error

10.4	Name	Description
	NACK error	Link system error
	WACK error	Link system error
-	Unit No. overlap	Link system error
!24	Transmission format error	Link system error
!25	Link unit hardware error	Link system error
!26	Unit No. setting error	Link system error
!27	No support error	Link system error
!28	No response error	Link system error
!29	Buffer closed error	Link system error
!30	Time-out error	Link system error
132	Transmission impossible error	Link system error
!33	Communication stop	Link system error
!36	No destination error	Link system error
!38	Other communication error	Link system error
!40	BCC error	A transfer error occurred in the received data.
!41	Format error	A command was received that does not fit the format.
!42	No support error	A command was received that is not supported.
!43	Multiple frames	A different command was received when processing multiple
:43	procedure error	frames.
!50	Link setting error	A route number that does not exist was specified. Verify the route number by designating the transmission station.
151	Transmission time-out error	Transmission to another device not possible because transmission buffer is congested.
!52	Transmit disable error	Transmission processing to another device is not possible.(Link unit runaway, etc.)
!53	Busy error	Command process cannot be received because of multiple frame processing. Or, cannot be received because command being processed is congested.
!60	Parameter error	Content of specified parameter does not exist or cannot be used.
!61	Data error	There was a mistake in the contact, data area, data number designation, size designation, range, or format designation.
<u>162</u>	Registration over error	Operation was does when number of registrations was exceeded or when there was no registration.
!63	PC mode error	PC command that cannot be processed was executed during RUN mode.

Error code	Name	Description
!64	External memory error	An abnormality occurred when loading RAM to ROM/IC memory card. There may be a problem with the ROM or IC memory card. -When loading, the specified contents exceeded the capacity. -Write error occurs. -ROM or IC memory card is not installed. -ROM or IC memory card does not conform to specifications -ROM or IC memory card board is not installed.
!65	Protect error	A program or system register write operation was executed when the protect mode (password setting or DIP switch, etc.)or ROM operation mode was being used.
!66	Address error	There was an error in the code format of the address data. Also. when exceeded or insufficient of address data, there was a mistake in the range designation.
!67	No program error and No data error	Cannot be read because there is no program in the program area or the memory contains an error. Or, reading was attempted of data that was not registered.
!68	Rewrite during RUN error	When inputting with programming tool software, editing of an instruction (ED, SUB, RET, INT, IRET, SSTP, and STPE) that cannot perform a rewrite during RUN is being attempted. Nothing is written to the CPU.
!70	SIM over error	Program area was exceeded during a program write process.
!71	Exclusive access control error	A command that cannot be processed was executed at the same time as a command being processed.

11.5 MEWTOCOL-COM Communication Commands

Command name	Code	Description
Read contact area	RC (RCS) (RCP) (RCC)	Reads the on and off status of contact. - Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Write contact area	WC (WCS) (WCP) (WCC)	Turns contacts on and off. - Specifies only one point. - Specifies multiple contacts. - Specifies a range in word units.
Read data area	RD	Reads the contents of a data area.
Write data area	WD	Writes data to a data area.
Read timer/counter set value area	RS	Reads the value set for a timer/counter.
Write timer/counter set value area	WS	Writes a timer/counter setting value.
Read timer/counter elapsed value area	RK	Reads the timer/counter elapsed value.
Write timer/counter elapsed value area	WK	Writes the timer/counter elapsed value.
Register or Reset contacts monitored	MC	Registers the contact to be monitored.
Register or Reset data monitored	MD	Registers the data to be monitored.
Monitoring start	MG	Monitors a registered contact or data using the code "MC or MD".
Preset contact area (fill command)	SC	Embeds the area of a specified range in a 16- point on and off pattern.
Preset data area (fill command)	SD	Writes the same contents to the data area of a specified range.
Read system register	RR	Reads the contents of a system register.
Write system register	WR	Specifies the contents of a system register.
Read the status of PLC	RT	Reads the specifications of the programmable controller and error codes if an error occurs.
Remote control	RM	Switches the operation mode of the programmable controller.
Abort	AB	Aborts communication.

Table of MEWTOCOL-COM commands

11.6 Hexadecimal/Binary/BCD

		_	BCD data			
Decimal	Hexadecimal	Binary data	(Binary Coded Decimal)			
0	0000	0000000 0000000	0000 0000 0000 0000			
1	0001	0000000 0000001	0000 0000 0000 0001			
2	0002	0000000 0000010	0000 0000 0000 0010			
3	0003	0000000 0000011	0000 0000 0000 0011			
4	0004	0000000 00000100	0000 0000 0000 0100			
5	0005	0000000 00000101	0000 0000 0000 0101			
6	0006	0000000 00000110	0000 0000 0000 0110			
7	0007	0000000 00000111	0000 0000 0000 0111			
8	0008	0000000 00001000	0000 0000 0000 1000			
9	0009	0000000 00001001	0000 0000 0000 1001			
10	000A	0000000 00001010	0000 0000 0001 0000			
11	000B	0000000 00001011	0000 0000 0001 0001			
12	000C	0000000 00001100	0000 0000 0001 0010			
13	000D	0000000 00001101	0000 0000 0001 0011			
14	000E	0000000 00001110	0000 0000 0001 0100			
15	000F	0000000 00001111	0000 0000 0001 0101			
16	0010	0000000 00010000	0000 0000 0001 0110			
17	0011	0000000 00010001	0000 0000 0001 0111			
18	0012	0000000 00010010	0000 0000 0001 1000			
19	0013	0000000 00010011	0000 0000 0001 1001			
20	0014	0000000 00010100	0000 0000 0010 0000			
21	0015	0000000 00010101	0000 0000 0010 0001			
22	0016	0000000 00010110	0000 0000 0010 0010			
23	0017	0000000 00010111	0000 0000 0010 0011			
24	0018	0000000 00011000	0000 0000 0010 0100			
25	0019	0000000 00011001	0000 0000 0010 0101			
26	001A	0000000 00011010	0000 0000 0010 0110			
27	001B	0000000 00011011	0000 0000 0010 0111			
28	001C	0000000 00011100	0000 0000 0010 1000			
29	001D	0000000 00011101	0000 0000 0010 1001			
30	001E	0000000 00011110	0000 0000 0011 0000			
31	001F	0000000 00011111	0000 0000 0011 0001			
	•	•	-			
· ·	•					
•		•	•			
63	003F	0000000 00111111	0000 0000 0110 0011			
•	•					
•	•	•	•			
255	00FF	00000000 11111111	0000 0010 0101 0101			
•	•	•	•			
	•	•	•			
	270E		1001 1001 1001 1001			
9999	270F	00100111 00001111	1001 1001 1001 1001			

11.7 ASCII Codes

				-	b7								
				-	b6	0	0	0	0	1	1	1	1
				-	b5	0	0	1	1	0	0	1	1
				-	b4	0	1	0	1	0	1	0	1
b7 b6 b5 b4	b3	b2	b1	b0	C/R	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DEL	SPACE	0	0	Ρ	`	р
	0	0	0	1	1	SOH	DC1	I	1	А	Q	а	q
	0	0	1	0	2	STX	DC2	п	2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	s
	0	1	0	0	4	EOT	DC4	\$	4	D	Т	d	t
	0	1	0	1	5	ENQ	NAK	%	5	Е	U	е	u
	0	1	1	0	6	ACK	SYN	&	6	F	V	f	v
	0	1	1	1	7	BEL	ETB	L	7	G	W	g	W
	1	0	0	0	8	BS	CAN	(8	Н	Х	h	х
	1	0	0	1	9	HT	EM)	9	T	Y	I	у
	1	0	1	0	А	LF	SUB	*		J	Z	j	z
	1	0	1	1	В	VT	ESC	+	i	к]	k	{
	1	1	0	0	С	FF	FS	,	<	L	¥	П	
	1	1	0	1	D	CR	GS	-	=	М]	m	}
	1	1	1	0	Е	SO	RS		>	Ν	۸	n	~
	1	1	1	1	F	SI	US	1	?	0	_	о	DEL

Phone: 800.894.0412 - Fax: 888.723.4773 - Web: www.clrwtr.com - Email: info@clrwtr.com

Index

A

Alarm function, 4 - 36ALARM LED, 8 - 7Alarm output, 4 - 37Arbitrary allocation, 3 - 3, 3 - 7ASCII codes, 10 - 97Automatic allocation, 3 - 3, 3 - 15

В

Backplane, 1 - 5, 2 - 3, 2 - 4, 2 - 5, 2 - 6, 4 - 6Backup battery, 4 - 13, 9 - 3Baud rate, 5 - 5BCD, 11 - 96Before entering a program, ix Before turning on the power, ix, 5 - 3Binary, 11 - 96

С

Check items, 5 - 3Clearing registered content, 3 - 17COM port (RS232C), 2 - 11Comment function, 6 - 16Communication error message, 8 - 9Communications specifications, 2 - 11Computer link, 1 - 15Connecting the terminals, 4 - 27Connecting with flat cable connector, 4 - 32Connection of capacitive loads, 4 - 22Connection of inductive loads, 4 - 21Connection of LED-equipped limit switch, 4 - 20 Connection of LED–equipped reed switch, 4 – 19

Connection of sensors, 4 – 18

Connection of two-wire type sensor, 4 – 19

Connector, 4 – 24

Connector for wire-pressed terminal cable, 4 – 25

Constants, 10 - 12

CPU backplane, 1 - 4

CPU with 64 points input (FP2–C1D), 2 – 12

CPU with IC memory card interface (FP2–C2P/FP2–C3P), 2 – 20

CT-2 connector terminal, 4 – 27

Current consumption, 1 – 13

D

Dimensions, 4 – 3, 10 – 3 DIN rail, 4 – 7 Dust proofing label, 4 – 8, 4 – 22

Ε

Eliminating effects from noise, 4 - 16Emergency stop circuit, 4 - 36EPROM, 6 - 8, 6 - 10Erasing, 7 - 6Erasing the IC memory card, 7 - 11ERROR LED, 8 - 5Expanded memory field, 7 - 6Expansion cable, 1 - 7, 2 - 7, 4 - 11Expansion memory, 7 - 22Expansion memory unit, 2 - 15, 2 - 22

F

Formatting, 7 – 6 Formatting the IC memory card, 7 – 8 FP2 CPU, 2 – 8 FP2 operation, 6 – 3 FP2 RAM operation, 6 – 5 FP2 ROM operation, 6 – 6 FP2SH CPU, 2 – 18 FP2SH operation, 6 – 13 FP2SH RAM operation, 6 – 17 FP2SH ROM operation, 6 – 19 Free slots, 3 – 18 FROM, 6 – 10, 7 – 3

G

General specifications, 10 – 3 Grounding, 4 – 17, 4 – 36

Η

Hexadecimal, 11 - 96

I

I/O allocation methods, 3 - 3I/O mixed unit, 2 - 32I/O mixed units specifications, 2 - 55I/O mount allocation, 3 - 3, 3 - 13IC memory card, 2 - 23, 7 - 3, 7 - 8IC memory card operation, 6 - 13, 6 - 29Initialize/test switch, 2 - 9Input and output units, 2 - 30Input unit, 2 - 31Input units specifications, 2 - 33Input wiring, 4 - 18Installation, 4 - 3 Installation location, 4 - 4Interlock circuit, 4 - 36Internal circuit diagram, 2 - 14, 2 - 33, 2 - 35, 2 - 38, 2 - 39, 2 - 42, 2 - 44, 2 - 46, 2 - 48, 2 - 50, 2 - 52, 2 - 54, 2 - 57, 2 - 60, 2 - 63, 2 - 66

L

Lifetime of backup battery, 9 – 3 Limitations on current consumption, 1 – 12

М

Memory areas, 10 - 10Menus related to tool software, 7 - 25Mode selector, 2 - 10MODEM, 1 - 17Momentary power failures, 4 - 37Mounting hole dimensions, 4 - 6Mounting method, 4 - 6

0

Occupied I/O points, 3 - 5On pulse catch input function, 2 - 67Operating environment, viii Operation condition switches, 2 - 10, 2 - 21Output unit, 2 - 31Output units specifications, 2 - 39Output wiring, 4 - 21

Ρ

Password, 8 – 10 Performance specifications, 10 – 5, 10 – 8 Pin layout, 2 – 14, 2 – 34, 2 – 36, 2 – 38, 2 - 40, 2 - 42, 2 - 44, 2 - 46, 2 - 48,2 - 50, 2 - 52, 2 - 54, 2 - 57, 2 - 60,2 - 63, 2 - 66Power outages, 6 – 4 Power supply sequence, ix Power supply system, 4 – 16 Power supply unit, 2 – 28 Power supply voltage, 4 – 15 Pressure connection terminal, 4 - 15 Preventive maintenance, 9 - 8 Program memory, 7 - 13 Program memory field, 7 – 6 Programming tool, 1 – 19, 4 – 5 Programming tool software, 5 – 5, 5 – 6 Protect error message, 8 – 10

R

RAM operation, 6 - 3, 6 - 5, 6 - 13Reading the program, 7 - 18Relays, 10 - 10Removable terminal block, 9 - 7Restrictions on unit types, 1 - 10ROM, 1 - 21, 2 - 15, 2 - 22ROM operation, 6 - 3, 6 - 13RT-2 relay terminal, 4 - 31

S

Safety measures, 4 – 36 Self-diagnostic function, 8 – 3 Setting the alarm battery error, 6 – 14 Setting the battery error warnings, 6 – 4 6-point type relay output unit, 2 – 41 16-point type DC input unit, 2 – 33 16-point type relay output unit, 2 – 39

16-point type transistor (NPN) output unit, 2 - 4316-point type transistor (PNP) output unit, 2 – 45 60k step standard type CPU (FP2-C2), 2 – 19 64-point type DC input unit, 2 – 37 64-point type transistor (NPN) output unit, 2 – 51 64-point type transistor (PNP) output unit, 2 - 53 Spare parts, 9 - 3 Specifications, 10 – 3 SRAM, 7 - 3 Standard type CPU (FP2–C1), 2 – 8 Start up sequence, 4 – 36 Static electricity, viii Status indicator LEDs, 2 – 9, 8 – 3 System configuration, 1 – 3

Τ

Terminal, 4 - 24 Terminal block, 4 – 34 32k step standard type CPU (FP2-C2L), 2 - 1932-point type transistor (PNP) output unit, 2 - 4932-point type DC input unit, 2 – 35 32-point type DC input with on pulse catch input function/32-point type transistor output (NPN) unit, 2 - 61 32-point type DC input with on pulse catch input function/32-point type transistor output (PNP) unit, 2 - 64 32-point type DC input/32-point type transistor (NPN) output unit, 2 – 55 32-point type DC input/32-point type transistor (PNP) output unit, 2 - 58

```
32–point type transistor (NPN) output unit,
2 – 47
Troubleshooting, 8 – 5
```

2-module type, 1 - 4

W

Watchdog timer, 4 - 37Weight, 10 - 4Wiring the connector type units, 4 - 23Wiring the terminal block type units, 4 - 34Writing the program, 7 - 13Writing to ROM, 6 - 8

Record of changes

Manual No.	Date	Desceiption of changes
ARCT1F320E ACG-M320E	Jul.2000	First edition
ARCT1F320E-1 ACG-M320E-1	Jul.2003	2 nd edition
ARCT1F320E-2 ACG-M320E-2	May.2004	3 rd edition
ARCT1F320E-3 ACG-M320E-3	Feb.2005	4 th edition
ARCT1F320E-4 ACG-M320E-4	Sep.2006	5 th edition
ARCT1F320E-5 ACG-M320E-5	Mar.2007	6 th edition
ARCT1F320E-6 ACG-M320E-6	Apr.2008	7 th edition
ARCT1F320E-7 ACG-M320E-7	Oct.2008	8 th edition
ARCT1F320E-8 ACG-M320E-8	Feb.2009	9 th edition
ARCT1F320E-9 ACG-M320E-9	Mar.2009	10 th edition
ARCT1F320E-10 ACG-M320E-10	Jan.2010	11 th edition
ARCT1F320E-11 ACG-M320E-11	Apr.2011	12 th edition
ARCT1F320E-12 ACG-M320E-12	Sep.2012	13 th edition